Demand forecasting by temporal aggregation: using optimal or multiple aggregation levels?

> Nikolaos Kourentzes^a Bahman R. Tabar^b Devon K. Barrow^b

^aLancaster University; ^bCoventry University

ISIR 2016

Lancaster Centre for

Agenda

How do we build models now?

- This is by no means a resolved question, but there are some reliable approaches. Key questions: model form & estimation.
- Take the example of exponential smoothing family:
 - Considered one of the most reliable and robust methods for automatic univariate forecasting [Gardner, 2006].
 - It is a family of methods: ETS (error type, trend type, seasonality type) [Hyndman et al., 2002, 2008]
 - Error: Additive or Multiplicative
 - Trend: None or Additive or Multiplicative, Linear or Damped/Exponential
 - Seasonality: None or Additive or Multiplicative
 - Adequate for a most types of time series.
 - Within the state space framework we can select and fit model parameters automatically and reliably.

Any issues with current forecasting practice?

Issues with modelling:

- Model selection \rightarrow How good is the best fit model? How reliable?
- Sampling uncertainty → Identified model/parameters stable as new data appear?
- Model uncertainty \rightarrow Appropriate model structure and parameters?
- Transparency/Trust \rightarrow Practitioners do not trust systems that change substantially

Temporal aggregation and forecasting

- Temporal aggregation has been explored as a way to help us deal with these issues.
- It is not new, but the question has been at which single level to model the time series. Econometrics have investigate the question for decades → inconclusive
- Supply chain applications: ADIDA [Nikolopoulos et al., 2011] → beneficial to slow and fast moving items forecast accuracy (like everything... not always!):
 - **Step 1**: Temporally aggregate time series to the appropriate level
 - Step 2: Forecast
 - **Step 3**: Disaggregate forecast and use
 - Selection of aggregation level → No theoretical grounding for general case, but good understanding for AR(1)/MA(1)/ARMA(1,1) cases [Rostami-Tabar et al., 2013, 2014].

Temporal aggregation and forecasting

Recently there has been a resurgence in using temporal aggregation for forecasting.

- Non-overlapping temporal aggregation is a moving average filter.
- Filters high frequency components: noise, seasonality, etc.
- Reduces intermittency [Nikolopoulos et al, 2011; Petropoulos & Kourentzes, 2014].
- But can increase complexity [Wei, 1978; Rossana & Seater, 1995; Silvestrini & Veredas, 2008]:
 - Loss of estimation efficiency;
 - Complicates dynamics of underlying (ARIMA) process;
 - Identifiable process converge to IMA often IMA(1,1);
 - What is the best temporal aggregation to work on?

Two school of thoughts. How do they compare?

- i. Traditional: Identify a single optimal temporal aggregation level to model [Rossana & Seater, 1995; Nikolopoulos et al., 2011; Rostami-Tabar et al., 2013, 2014].
- ii. Use multiple temporal aggregation levels [Kourentzes et al., 2014; Kourentzes & Petropoulos, 2015].

How temporal aggregation changes the series

Identifying the optimal aggregation level

Rostami-Tabar et al. 2014 evaluate analytically the impact of temporal aggregation for **ARMA(1,1)**, **AR(1)** and **MA(1)** and derive formulas to find the optimal aggregation level in terms of MSE when forecasting with **Single Exponential Smoothing**.

$$MSE_{ARMA} = \frac{2\sigma^2 \left(k \left(1 - 2\phi\theta + \theta^2 \right) + \left(\phi - \theta \right) \left(1 - \phi\theta \right) \left(\sum_{i=1}^{k-1} 2 \left(k - i \right) \phi^{i-1} \right) \right)}{(2 - \alpha) \left(1 - \phi^2 \right)} + \frac{2\sigma^2 \alpha \left(\sum_{i=1}^{k} \left(i\phi^{(i-1)} \right) + \sum_{i=2}^{k} \left(i - 1 \right) \phi^{(2k-i)} \right) \left(\phi - \theta \right) \left(1 - \phi\theta \right)}{(2 - \alpha) \left(1 - \phi^k + \alpha\phi^k \right) \left(1 - \phi^2 \right)}$$

$$MSE_{AR} = 2\sigma^{2} \left(\frac{k + \sum_{i=1}^{k-1} 2(k-i)\phi^{i}}{(1-\phi^{2})(2-\alpha)} \right) - \frac{2\sigma^{2}\alpha \left(\sum_{i=1}^{k} (i\phi^{(i-1)}) + \sum_{i=2}^{k} (i-1)\phi^{(2k-i)} \right)}{(2-\alpha)(1-\phi^{k}+\alpha\phi^{k})(1-\phi^{2})}$$

$$MSE_{MA} = \frac{\sigma^2 \left(2k \left(1 + \theta^2\right) - 2 \left(k - 1\right)\theta + 2\alpha\theta\right)}{2 - \alpha}$$

We need to know **parameters of original process (\phi, \theta)** and optimal smoothing **parameter \alpha for SES** at **aggregate level k**.

Calculate MSE for various k and pick the best to find the optimum temporal aggregation level.

Using multiple aggregation levels

What if we do not select an aggregation level? \rightarrow use multiple [Kourentzes et al., 2014]

Issues:

- Different model
- Different length
- Combination

Transform states to additive and to original sampling frequency

Multiple Aggregation Prediction Algorithm (MAPA)

Empirical evaluation

- Forecast the next 13 periods
 - **Simulated**: known processes can be used to assess the optimal selection
 - ARIMA(p,d,q), with p = (0,1,2), d = (0,1) and q = (0,1,2)
 - 500 series each process, 60 fit set & 40 test set.
 - **Real**: 229 series of 173 weekly observations non-seasonal
 - ADF test suggests that 90% is ARIMA(p,0,q) and 10% ARIMA(p,1,q).
 - 130 fit set & 43 test set
- Accuracy metric: ARMAE; < 1 better than benchmark!

$$MAE = m^{-1} \sum_{t=1}^{m} |y_t - \hat{y}_t| \qquad ARMAE = \sqrt[n]{\prod \left(\frac{MAE_i}{MAE_b}\right)}$$

Methods

- Original sampling frequency (no aggregation)
 - Benchmark: Single exponential smoothing Orig-SES
 - ETS model family **Orig-ETS**
- Single temporal aggregation
 - Heuristic based level (13 periods) Heur-SES
 - Optimal level Opt-SES
- Multiple temporal aggregation
 - Restricted to SES only MAPA-SES
 - Unrestricted MAPA

Accuracy - ARMAE

Demand	No aggregation		Single level		Multiple levels	
	Orig-SES	Orig-ETS	Heur-SES	Opt-SES	MAPA-SES	MAPA
ARIMA(1,0,0)	1.000	0.979	0.974 <	0.975	0.972	0.961
ARIMA(0,0,1)	1.000	1.002	0.960	0.965	0.972	0.973
ARIMA(2,0,0)	1.000	0.971	0.986	0.983	0.973	0.949
ARIMA(0,0,2)	1.000	1.002	0.969	0.969	0.978	0.979
ARIMA(1,0,1)	1.000	1.001	0.966 <	0.971	0.964	0.963
ARIMA(2,0,2)	1.000	0.983	0.990	0.982	0.974	0.953
$\overline{\text{ARIMA}(1,1,0)}$	1.000	1.000	1.439	1.223	1.062	1.004
ARIMA(0,1,1)	1.000	1.051	1.290	1.173	1.030	1.037
ARIMA(2,1,0)	1.000	0.891	1.444	1.207	1.062	0.916
ARIMA(0,1,2)	1.000	1.048	1.278	1.091	1.011	1.012
ARIMA(1,1,1)	1.000	0.975	1.349	1.191	1.056	0.990
ARIMA(2,1,2)	1.000	0.927	1.327	1.139	1.044	0.922
ARIMA(*,0,*)	1.000	0.989	0.974 =	0.974	0.972	0.963
ARIMA(*,1,*)	1.000	0.980	1.353	1.170	1.044	0.979
$\operatorname{ARIMA}(*,*,*)$	1.000	0.985	1.148	1.068	1.007	0.971
Real Data	1.000	1.011	0.999	0.999	0.992	0.994

Conclusions

- Temporal aggregation **improves accuracy** → **use it**!
- Identifying optimal aggregation level does not always work as expected, but overall equal if not better than heuristic for selecting level.
- Why? Optimal selection of level is not robust enough to model uncertainty at the original and aggregate level → we simply do not know the true process and optimal selection assumes knowledge of it.
- MAPA by construction is suboptimal for any process, but it is very robust and reliable → consistently resulted in better accuracy (matches the literature).
- Future research should focus on:
 - How can we make optimal more robust?
 - How can we make MAPA "more optimal"?

Temporal aggregation R code!

To temporally aggregate a series use the function tsaggr from the MAPA package: http://cran.r-project.org/web/packages/MAPA/index.html

Code for finding the **optimal temporal aggregation level** is available for R, in the **TStools** package, which is available at GitHub (not in CRAN yet): <u>https://github.com/trnnick/TStools</u> - function: get.opt.k

The **Multiple Aggregation Prediction Algorithm** is available for R, in the **MAPA** package: <u>http://cran.r-project.org/web/packages/MAPA/index.html</u> Its intermittent demand counterpart is available in the **tsintermittent** package: <u>http://cran.r-project.org/web/packages/tsintermittent/index.html</u> Examples and interactive demos for both are available at my blog: <u>http://nikolaos.kourentzes.com</u>

Thank you for your attention! Questions?

Published, working papers and code available at my blog!

Nikolaos Kourentzes

email: n.kourentzes@lancaster.ac.uk

blog: http://nikolaos.kourentzes.com

