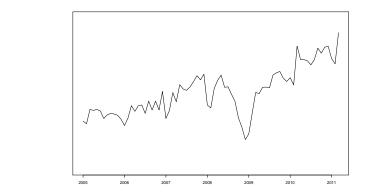
Incorporating macro-economic leading indicators in inventory management Yves R. Sagaert, Stijn De Vuyst, Nikolaos Kourentzes, El-Houssaine Aghezzaf, Bram Desmet


Department of Industrial Management, Ghent University

26/08/2016

Motivation

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

When will the next economic crisis hit? Where? For how long?

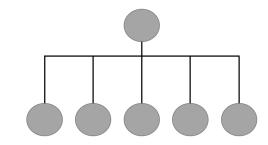
Traditional univariate forecasting techniques do not incorporate context information

ISIR 2016

Research Question

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion Long term sales forecasting are formulated using

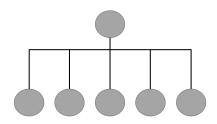
- Historical data patterns (level, trend, seasonality, ...)
- Promotions
- Judgemental adjustments:
 - Collaborative input from clients
 - Newspapers and industry magazines
 - Rumors in the corridors


Judgemental input is known to be biased and inconsistent (Fildes and Goodwin 2007, Trapero et al. 2013)

- Information of exogenous leading indicators
 - Capturing market sentiment in external big data (Russom et al. 2011)

Research Question

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion


• Can macro-economic indicators improve sales forecasts?

• What is the real impact on the supply chain inventory?

Experiment design

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

Incorporating leading indicator information

- Tactical level
- Plant level
- Top-down level

Evaluation: MAPE and MdAPE

ISIR 2016

Models

Motivation Experiment

Forecasting Uncertainty

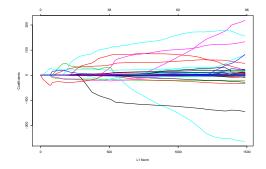
Inventory Conclusion

design Models Data

Benchmark models

- Naive model
- Holt-Winters model
- Exponential Smoothing
- LASSO model

$$\hat{Y}_i = \beta_0 + \sum_{k=1}^{S} \beta_k D_k + \sum_{j=1}^{P} \beta_j x_{ij}$$
 (1)


Cost function:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{p=1}^{P} \beta_p x_{ip} \right)^2 + \lambda \sum_{p=1}^{P} |\beta_p|$$
(2)

LASSO

Least Absolute Shrinkage Selection Operator (Tibshirani, 1996)

- Shrinkage and variable selection
- Selecting λ through cross-validation

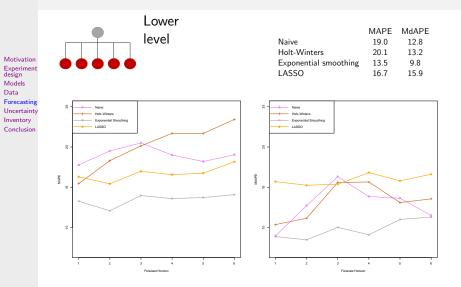
Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

LASSO

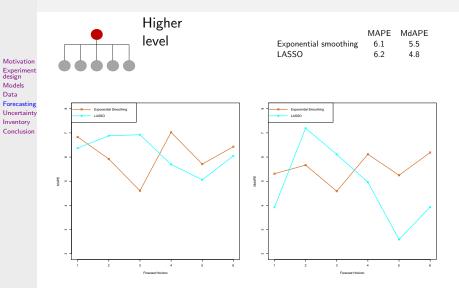
Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion Working paper:

Sagaert Y. R., Aghezzaf E.H., Kourentzes N. and Desmet B. Tactical sales forecasting using a very large set of macroeconomic indicators. European Journal of Operational Research.

- MAPE improvement 18.8% on 1-12 months ahead
- Set of 67,851 indicators
- Unconditional Forecasting
- Final model: 10-15 indicators selected
 - Employment in automobile
 - National passenger car registrations
 - Consumer Prices Index for solid fuel prices


Data

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

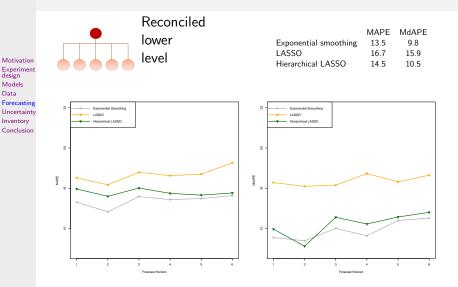

Sales data of 5 plants of a global manufacturer

- Train period: 2005 2012
- Test period: 2013 2014
- Forecast horizon h=1..6
- Rolling origin evaluation

Empirical results: forecasting accuracy

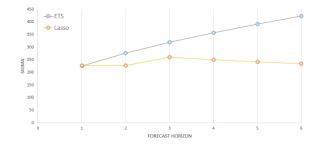
Empirical results: forecasting accuracy

Reconciliation hierarchical forecasting


Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

The hierarchy is captured in the summing matrix Reconciliation incorporates 1/MSE of each forecast

$$\begin{bmatrix} \hat{Y}_{Tot} \\ \hat{Y}_A \\ \hat{Y}_B \\ \hat{Y}_C \\ \hat{Y}_D \\ \hat{Y}_E \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{Y}_{A,r} \\ \hat{Y}_{B,r} \\ \hat{Y}_{C,r} \\ \hat{Y}_{D,r} \\ \hat{Y}_{E,r} \end{bmatrix},$$


(3)

Empirical results: forecasting accuracy

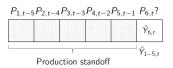
Uncertainty: iterative vs direct forecasting

Reformulated LASSO model for each horizon allows for empirical estimation of $\sigma_{\rm h}$

Direct forecasting: independent across horizons Iterative forecasting: covariances inflate variance

ISIR 2016

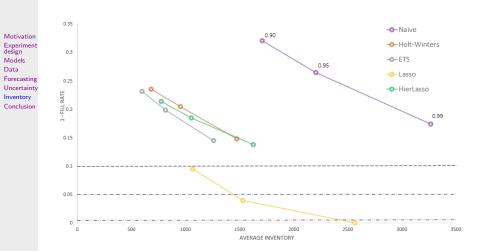
Motivation Experiment design Models Data


Forecasting

Uncertainty

Inventory Conclusion

Inventory simulation



Simulation parameters

- Production standoff t+6
- Service level: 0.9, 0.95, 0.99
- Inventory policy: Make to stock

Average inventory per service level

ISIR 2016

Conclusion

- Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion
- LASSO has an improved forecasting accuracy on long-term
- On short horizons, LASSO leads to service level and inventory improvements

Questions?

Motivation Experiment design Models Data Forecasting Uncertainty Inventory Conclusion

Thank you for your attention !

Yves R. Sagaert - yves.sagaert@ugent.be