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Motivation

When will the next economic crisis hit? Where? For how long?

2005 2006 2007 2008 2009 2010 2011

Traditional univariate forecasting techniques do not incorporate
context information
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Research Question

Long term sales forecasting are formulated using

Historical data patterns (level, trend, seasonality, ...)

Promotions

Judgemental adjustments:

Collaborative input from clients
Newspapers and industry magazines
Rumors in the corridors

Judgemental input is known to be biased and inconsistent
(Fildes and Goodwin 2007, Trapero et al. 2013)

Information of exogenous leading indicators

Capturing market sentiment in external big data (Russom et
al. 2011)
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Research Question

Can macro-economic indicators improve sales forecasts?

What is the real impact on the supply chain inventory?
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Experiment design

Incorporating leading indicator information

Tactical level

Plant level

Top-down level

Evaluation: MAPE and MdAPE
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Models

Benchmark models

Naive model

Holt-Winters model

Exponential Smoothing

LASSO model

Ŷi = β0 +
S∑

k=1

βkDk +
P∑
j=1

βixij (1)

Cost function:

n∑
i=1

yi − β0 −
P∑

p=1

βpxip

2

+ λ

P∑
p=1

|βp| (2)
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LASSO

Least Absolute Shrinkage Selection Operator (Tibshirani, 1996)

Shrinkage and variable selection

Selecting λ through cross-validation
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LASSO

Working paper:
Sagaert Y. R., Aghezzaf E.H., Kourentzes N. and Desmet B.
Tactical sales forecasting using a very large set of macroeconomic
indicators. European Journal of Operational Research.

MAPE improvement 18.8% on 1-12 months ahead

Set of 67,851 indicators

Unconditional Forecasting

Final model: 10-15 indicators selected

Employment in automobile
National passenger car registrations
Consumer Prices Index for solid fuel prices
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Data

Sales data of 5 plants of a global manufacturer

Train period: 2005 - 2012

Test period: 2013 - 2014

Forecast horizon h=1..6

Rolling origin evaluation
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Empirical results: forecasting accuracy

Lower
level

MAPE MdAPE
Naive 19.0 12.8
Holt-Winters 20.1 13.2
Exponential smoothing 13.5 9.8
LASSO 16.7 15.9
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Empirical results: forecasting accuracy

Higher
level

MAPE MdAPE
Exponential smoothing 6.1 5.5
LASSO 6.2 4.8
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Reconciliation hierarchical forecasting

The hierarchy is captured in the summing matrix
Reconciliation incorporates 1/MSE of each forecast

ŶTot

ŶA

ŶB

ŶC

ŶD

ŶE


=



1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ŶA,r

ŶB,r

ŶC ,r

ŶD,r

ŶE ,r

 , (3)
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Empirical results: forecasting accuracy

Reconciled
lower
level

MAPE MdAPE
Exponential smoothing 13.5 9.8
LASSO 16.7 15.9
Hierarchical LASSO 14.5 10.5
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Uncertainty: iterative vs direct forecasting

Reformulated LASSO model for each horizon allows for empirical
estimation of σh

Direct forecasting: independent across horizons
Iterative forecasting: covariances inflate variance
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Inventory simulation

Simulation parameters

Production standoff t+6

Service level: 0.9, 0.95, 0.99

Inventory policy: Make to stock
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Average inventory per service level
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Conclusion

LASSO has an improved forecasting accuracy on long-term

On short horizons, LASSO leads to service level and inventory
improvements
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Questions?

Thank you for your attention !
Yves R. Sagaert - yves.sagaert@ugent.be
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