Improving Forecast Quality

Steve Morlidge

Steve Morlidge

Unilever (1978–2006) roles include:

- Controller, Unilever Foods UK (\$1 billion turnover)
- Leader, dynamic performance management change project (part of Unilever's Finance Academy), 2002–2006

Outside Unilever

- Chairman of the BBRT, 2001–2006
- BBRT Associate, 2007 to present
- Founder/director, Satori Partners Ltd., 2006
- Ph.D., Hull University (Management Cybernetics), 2005
- Visiting Fellow, Cranfield University, 2007
- Coauthored book Future Ready: How to Master Business Forecasting, 2010
- Editorial Board, Foresight magazine, 2010
- Founder, CatchBull (forecasting performance management software), 2011

Six Key Design Principles

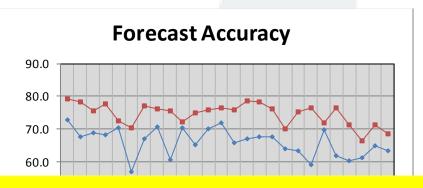
mastering

Mastering time

Mastering models

Mastering risk

Mastering process



Measuring forecast 'quality'

Period Date	Unit A FA%	Unit BFA%				
01 Aug 2010	72.8	79.1				
01 Sep 2010	67.7	78.3				
01 Oct 2010	69.0	75.5				
01 Nov 2010	68.4	77.6				
01 Dec 2010	70.5	72.6				
01 Jan 2011	57.0	70.4				
01 Feb 2011	67.1	77.1				
01 Mar 2011	70.6	76.0				
01 Apr 2011	60.5	75.5				
Ol May 2 Unanswered guestions						

01 Mar 2

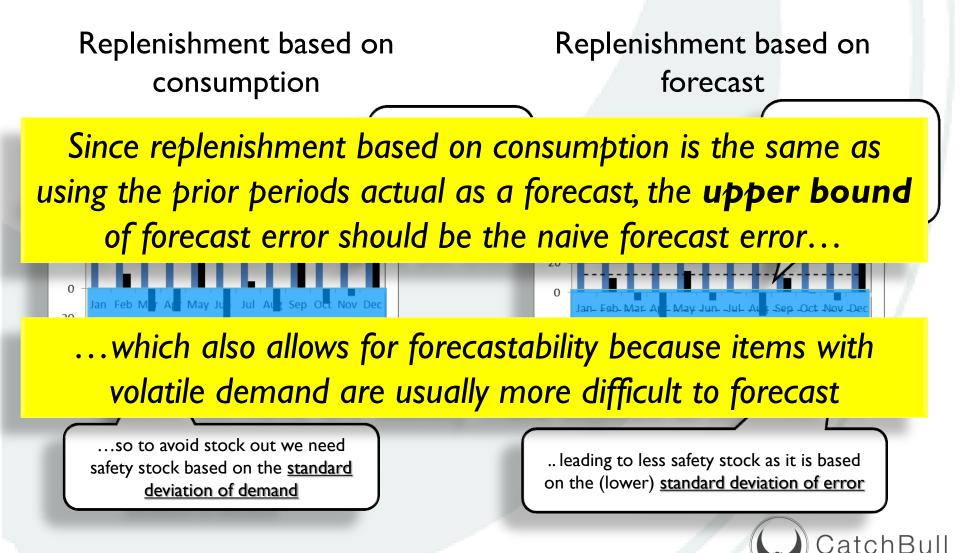
01 Sep 2

01 Jun 2

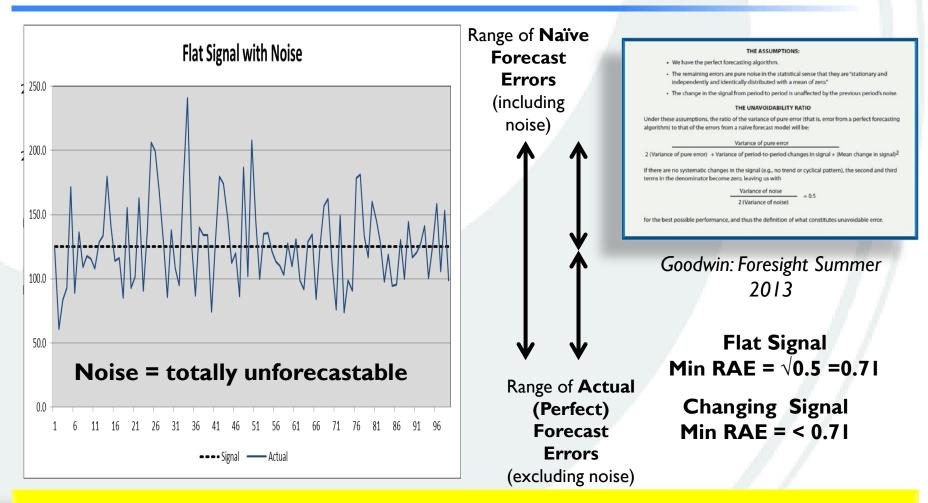
- Is this good or bad performance? 01 Jul 2 •
- 01 Aug 2 How much of this error is avoidable? 01 Sep 2
- Is Unit B better at forecasting or is it easier to forecast? 01 Oct 2 •
- 01 Nov 2 Is performance declining because it's getting more difficult to forecast? 01 Dec 2
- What is driving this performance? 01 Jan 2 • 01 Feb 2
 - Is your forecasting methodology adding value or destroying it?
- Is the application of judgement improving or degrading performance? 01 Apr 2 • 01 May 2
- How much are forecast 'failures' costing? 01 Jun 2
- What are the implications for stock and customer service? 01 Jul 2 01 Aug 2
 - Is this better or worse than the norm?
 - What is the scope for improvement?
 - What do I do now?

Forecast Quality

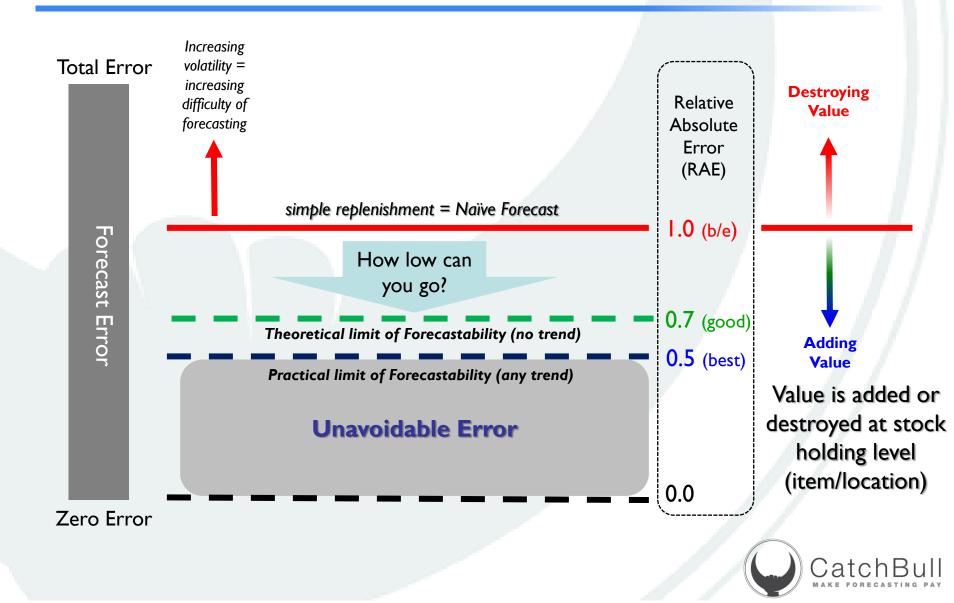
How to measure itWhat we find in practice



Quality: a practical definition


- Better than 'not forecasting at all' (higher bound of forecast error)
- As close to minimum avoidable error (lower bound of error) as possible
- At the decision making level (e.g. supply chain = low level stock replenishment point)
- At affordable cost

Why forecast? 101 (for the Supply Chain)



Lower Limit of error

The **lower bound** of forecast error is <u>also</u> related to the naïve forecast...expressed as **Relative Absolute Error (RAE)**

New thinking: new measures

The evidence: research²⁰¹³

9 samples from 8 businesses – 330,000 data points

Traditional measures unhelpful

	Median RAE	Wtd Av RAE		Median MAPE	Forecast Accuracy	
Sample I	0.94	0.89		56%	49%	
Sample 2	1.15	1.04		34%	77%	
Sample 3	0.97	0.81		89%	34%	
Sample 4	1.00	<u>1.53</u>		56%	35%	
Sample 5	0.99	1.14		56%	45%	
Sample 7	1.06	<u>1.89</u>		42%	8%	
Sample 7	0.94	0.99		10%	35%	
Sample 8	1.05	0.87		105%	53%	
Sample 9	1.10	0.99		110%	51%	
Mean	1.02	1.13		62%	43%	
Excl Outliers		<u>0.96</u>		Very little value added		

Research²⁰¹³

9 samples from 8 businesses – 330,000 data points

Distribution of RAE

	Median RAE	Wto R/	What "goo		<0.5	0.5-0.7	0.7-1.0	>1.0
Sample I	0.94	0.8	looks like		0%	6%	52%	42%
Sample 2	1.15	1.04	34%	77%		5%	33%	62%
Sample 3	0.97	0.81	89%	34%	8%	12%	33%	47%
Sample 4	1.00	1.53	56%	35%	13%	11%	27%	49%
Sample 5	0.99	1.14	56%	45%	1%	9%	42%	48%
Sample 7	1.06	1.89	Few forecasts		7%	10%	27%	56%
Sample 7	0.94	0.99	RAE of 0.5		4%	11%	44%	40%
Sample 8	1.05	0.87	limit?		6%	2%	35%	57%
Sample 9	1.10	0.99	110%	51%	2%	3%	31%	64%
Mean	1.02	1.13	62%	43%	5%	8%	36%	52%
Excl Outliers		0.96	1	Most fore destroyi			Ca	tchB

Forecast Quality

...Putting the research to use

Key Concepts

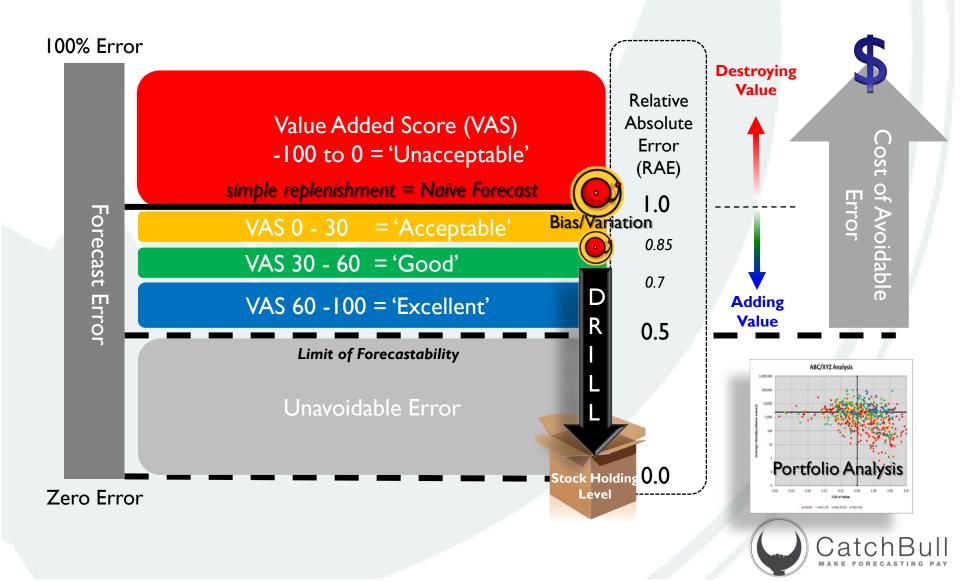
• Identify and cost **avoidable** error:

....to provide an objective business assessment of quality and its value

Separate **two types** of error:

....target bias and variation to improve forecast quality

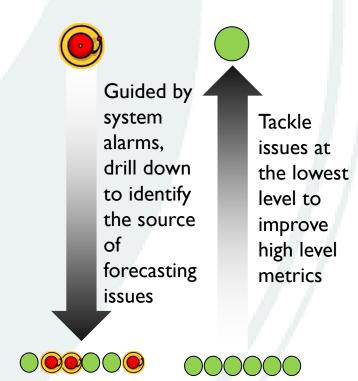
Translate into Forecast Value Added:


....the one metric/benchmark for <u>all</u> users

• Continuously **track performance** at all levels:

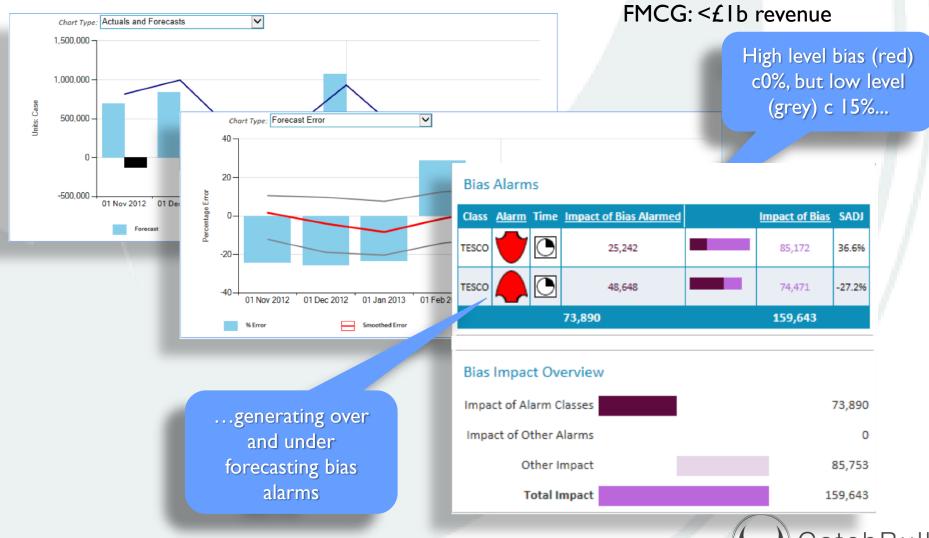
....to stimulate speedy corrective action

Key Concepts: Forecast Value Added

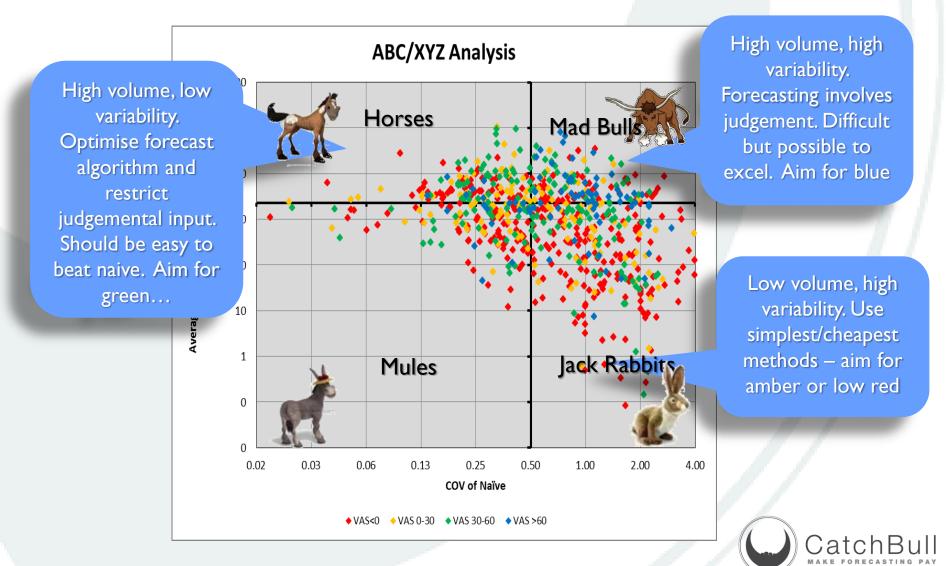

Improving Forecast Quality In practice

I. Issue management: eliminating bias

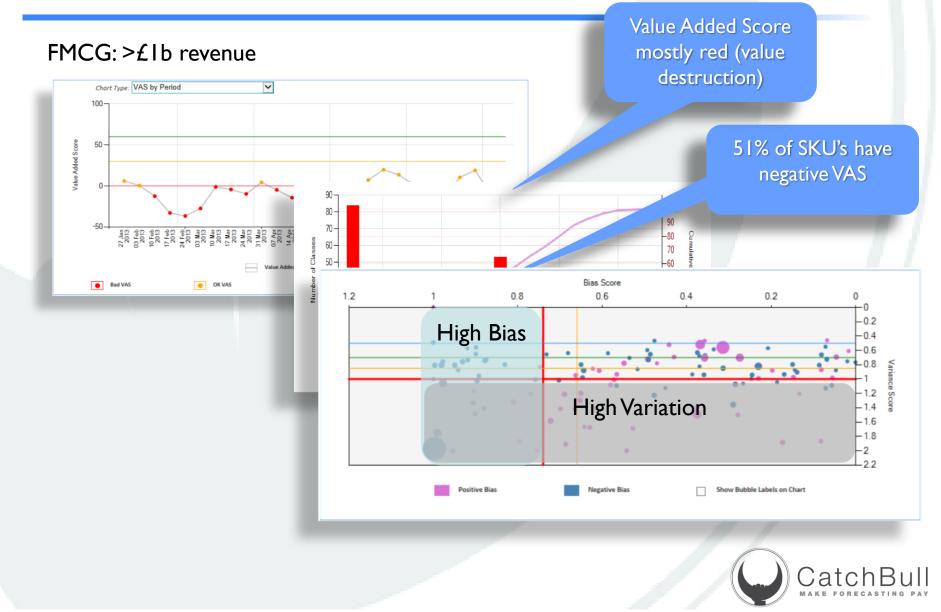
Traditional Metrics focus on high level performance...



Continuous Improvement


...but cost and customer service are driven by the quality of low level forecasts

Issue Management Example



2. Improving Methods: where to use judgement

2. Improvement Example

What is this worth?

Ready Reckoner	Cost of Sales	Per €lb revenue*
Total Cost of Error	4%-8%	€20-40m
Forecast Value Added	0%-2%	€0-10m
Avoidable Error	2%-4%	€10-20m

* Assuming 50% Gross Margin

Key points

- I. Measurement is key
- 2. Need to account for forecastability
- 3. Measures should be actionable
- 4. Improvement is from a)tuning and b)choosing models
- 5. Forecasts add value by beating the naïve forecast
- 6. The first step is to stop destroying value: 'easy'
- 7. Differentiate between bias and variation: the impact of interventions and of model choice
- 8. Drill from high to low level to tune forecasts
- 9. Differentiate to help choose modelling approach

In summary

Contact details

Thank you

<u>steve.morlidge@catchbull.com</u> www.catchbull.com

