
Page 1

New Product Forecasting with Analytics
© 2016 by Sven F. Crone - all rights reserved.

Universität Hamburg 
Institut für Wirtschaftsinformatik  

Prof. Dr. D.B. Preßmar

Dr. Sven F. Crone

Dr. Nikolaos Kourentzes

Predictive Analytics for New Product Forecasting

More Statistics and less Judgment:More Analytics and less Judgment: a Case Study

New Product =     Gambling?

Forecasting



Page 2

New Product Forecasting with Analytics
© 2016 by Sven F. Crone - all rights reserved.

Statistics? Judgment?

Both?

 Statistics vs. Judgment in New Product Forecasting?

e.g. Delphi

Szenarios

Market Tests

Prediction Markets

e.g. Norton-Bass

Classification

Clustering

Social-media analysis

…

How to forecast high-tech products (CPU,RAM) at Intel?
 Product sourcing & production lead times are longer than sales 

period  every product is “new”

 Often requires building new production facilities (or even plants) 
 high costs for under & overforecasting

 100s to 1,000s of new products per season

 2-4 innovation cycles (selling seasons) per year
 Requires semi-automated & standardized process

 How to they do New product forecasting?

The Challenge



Page 3

New Product Forecasting with Analytics
© 2016 by Sven F. Crone - all rights reserved.

Sales of products with continuous repeat purchasing?

Norton-Bass Model

Estimate
total market
volume from
first 3 sales

observations

Common Problem

Catalogue Retailers

 order from China / India

 3-6 months lead time

 4 catalogues per year

Fashion Retailers

 order from China / India

 3-6 months lead time

 3-12 seasons per year

Sourcing lead times are 

longer than sales period 

(for many products)

 many products are “new”
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CDs, DVDs, BlueRays, Video Games … 

Product launch & intial sales before, during & after go-
live (i.e. pipeline-filling) are most important

Common Problem

Common Problem

… check out the scaled thumbnails of the first 8 weeks 

of sales time series plots for 100 new DVD releases
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Few things are completely new!

Delphi

Szenarios

Market Tests

Prediction Markets

Forecast using Analogies

How to find similar products from history (aka Analogies) automatically? 

Finding Analogies: you try it!

Now

find:

Cluster 1: Cluster 2:

aka statistical technique called „Clustering“
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 Finds clusters of typical initial sales behavior
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Time series with 27 months of observations

Hard to extract useful information!
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No additional information

Find time series that 

behave similarly
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… using Kmeans clustering
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Focus on the first three months (new products)

Analogies in Time Series? 

 Need to be careful in specifying SIMILIARITY !

New product to be launched

Only one initial order Match to most similar cluster
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(plus 10s of product attributes etc.)

Analogies in Time Series? 

Compare

similarity

Multiple observations …

Take average shape of 

cluster as forecast! 
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What is “Similarity”?

What is “Similarity”?
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What is “Similarity”?

What is “Similarity”?
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What is “Similarity”?

What is “Similarity”?
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two time series Q = {q1, q2, …, qn}
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Find similar 

shapes in 

time series
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Similarity in Time Series? 

Empirical

Testing!

Theory?

Frost!

Tongue!

Not a 

good

idea

How do we know that it works?
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• Curtains

• Tiebacks

• Cushion covers

• Valances

 in various fabrics, linings, sizes, colours …

Case Study Task(s)

Clustering on the 

first three observations

Clustering on the 

first six observations

Clustering Approach Objectives?

Initial behaviour matching

Very short history

Longer history

Recalibrate matching

Clustering of the 

1st pre-order 

& product attributes

Forcast inital pipline filling

Without sales history

 after the 6th month the history is long enough to use time series methods

support complete launch process!allocate to clusters on more data
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Sample new product – First 52 weeks of deliveries

Pipeline filling Normal behaviour

How to forecast with zero weeks of sales?

Know initial

delivery volume

 Automatic forecasting by structured analogy

Products
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Adapt pattern 

to new product

Repository of 

clusters (with 

archetypical new 

product sales)

Initial known orders

(interview, trial etc.)

3000 units

75000 units

45 units
...

Calculate 

safety stock 

and use!

Stage I - Clustering

Stage II - Forecast

time series clustering

New Product Clustering
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Clustering Results
3 first observations

I.    262 products used with history up to 27 months

II. Each product → Only first three months used

III.  8 clusters → Optimal number

IV. Each cluster → Average behaviour found

V. Average behaviour → New products will be matched with
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Business intelligence can eliminate/correct clusters → Cluster 5 case

Clustering Results
3 first observations
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Forecasting

Using the estimation for the first month value and the product type 

find the correct cluster using the three first observations clusteringI.
e.g. First value = 150, Unlined curtain Cluster 7!

Forecasting

Using the estimation for the first month value and the product type 

find the correct cluster using the three first observations clusteringI.
Use the % change of the average shape of the cluster to form the 

2nd and 3rd valueII.

Second Value (Month):

150 * (1-0,4823) = 77.65

Third Value (Month):

77.65 * (1+0,2044) = 93.52
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Forecasting

Using the estimation for the first month value and the product type 

find the correct cluster using the three first observations clustering.I.
Use the % change of the average shape of the cluster to form the 

2nd and 3rd value.II.
For the 4th-6th month forecasts use the clustering of the first 6 months

to find the product membership (similar procedure!).III.

Update the forecasted values with real whenever they are available. 

If possible re-evaluate membership when new values are available.IV.

To forecast after the sixth value/month use a statistical model. The

product history is now long enough!V.

 Time series clustering always outperforms statistical approach

 Time series clustering outperformed human demand planner

How accurate is it?

Evaluate on time series of the given data

Statistical ForecastingProposed Approach
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New Product Forecasting
Experimental Evaluation
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Historical Data

Clustering Profiles

Allows us to

measure safety stock!
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Empirical Evaluation
Inventory Performance 

Inventory Performance Results
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S1: Features

S2: Initial Orders

S3: Features & I. Orders

S4: Features & Sales (2)

S5: Features & Sales (6)

Clustering on
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 Outcome: simple MS EXCEL application that can be automated

Clustering Results

A simple Forecasting Tool

Take aways

Many industries specialize on
New Product Forecasting 
 opportunities to learn (steal fire)

Clustering creates insightful groups 
of similar products  helpful 
to planners to improve judgment

Allows large-scale automation of 
new product forecasting

Predictive Analytics provides new 
solutions to forecasting challenges

… room for improvement!
[LCF ISF09, SAS New Product Presentation ISF 2008]

Looking for 

companies for a 

free-of-charge

pilot study

(to present at IBF?)
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Questions?

Dr. Sven F. Crone
Assistant Professor, Director

Lancaster University Management School
Research Centre for Forecasting

Lancaster, LA1 4YX
Tel. +44 1524 5-92991

s.crone@lancaster.ac.uk
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