Spare parts inventory management: new evidence from distribution fitting

Laura Turrini
Joern Meissner

IIF Workshop on Supply Chain Forecasting for Operations
Lancaster | 29. Juni 2016
FORECASTING SPARE PARTS: WHICH DISTRIBUTION?

Intermittent demand

Inventory performance metrics:
- Achieved service level
- Average inventory on hand

- Which is the right distribution?
- Which is the right test to measure goodness-of-fit?
DISTRIBUTIONS IN THE LITERATURE

Compound distributions:
- Discrete time
 - $p_t \sim \text{Ge}(p)$
 - $z_t \sim (\ , \), \ \leftarrow$
- Continuous time
 - $p_t \sim (\)$
 - $z_t \sim \text{Ge}(p), \text{Log}(p), \ \leftarrow$

Classic distributions:
- Normal, Gamma, Poisson, …

Figure: Syntetos et al. (2012)
KOLMOGOROV-SMIRNOV TEST

\[F(x) \] – unknown real cumulative distribution of the data
\[F_0(x) \] – supposed distribution
\[F_n(x) \] – empirical distribution

\[H_0 : F = F_0 \]

K-S statistic:
\[D = \sup_x \left| F_n(x) - F_0(x) \right| \]

- Standard critical values are distribution-free for fully specified, continuous distribution
- Conservative test for discrete data

Massey (1951): The Kolmogorov-Smirnov Test for Goodness of Fit Journal of the American Statistical Association 46(253) 68-78
MODIFIED TESTS WITH FOCUS ON TAILS:
2 – A MODIFIED ANDERSON-DARLING TEST

Classic A-D statistic:

\[A = n \left[F_n(x) - F(x) \right]^2 (F(x)) \, dx \]

with \((u) = \frac{1}{u(1-u)} \)

The modified A-D test uses \((u) = \frac{1}{1-u} \) weight only on the right tail!

- \(f \) – discrete with support \([1,k]\)
- \(p_j \) – probability of \(f(x) = j \)
- \(S_j \) – count of observations assuming value \(j \)
- \(T_j \) – expected number of observations assuming value \(j \)
- \(Z_j = S_j - T_j \)
- \(H_j = T_j / n \)

Modified A-D statistic:

\[AU^2 = \frac{1}{n} \sum_{j=1}^{k} \frac{Z_j^2 p_j}{1 - H_j} \]

Sinclair et al. (1990): *Modified Anderson Darling test* Communications in Statistics-Theory and Methods 19(10) 3677-3686
MODIFIED TESTS WITH FOCUS ON TAILS:
2 – A MODIFIED K-S TEST

Classic K-S test

\[x \rightarrow D(x) = \left| F_n(x) - F_0(x) \right| \]

Modified K-S test

\[x \rightarrow A_i \rightarrow D(x) = \left| F_n(x) - F_0(x) \right| \]

\[D = \sup_x |D(x)| \]
DATASETS

Dataset 1
- 4483 SKUs
- 3 years weekly data
- Mixed intermittency

Dataset 2 - RAF
- 5000 SKUs
- 7 years monthly data
- Very intermittent!

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1.01</td>
<td>17.44</td>
<td>79.50</td>
</tr>
<tr>
<td>CV^2</td>
<td>0</td>
<td>0.29</td>
<td>18.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>4.15</td>
<td>9.50</td>
<td>24.00</td>
</tr>
<tr>
<td>CV^2</td>
<td>0</td>
<td>0.46</td>
<td>11.88</td>
</tr>
</tbody>
</table>
FITTING DEMAND PER PERIOD – DATASET 1

<table>
<thead>
<tr>
<th></th>
<th>Poisson</th>
<th>Normal</th>
<th>Gamma</th>
<th>NBD</th>
<th>Stutt. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-S classic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>70%</td>
<td>0.6%</td>
<td>42%</td>
<td>79%</td>
<td>96%</td>
</tr>
<tr>
<td>Good</td>
<td>3%</td>
<td>0.2%</td>
<td>8%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>No</td>
<td>27%</td>
<td>99%</td>
<td>50%</td>
<td>20%</td>
<td>3%</td>
</tr>
<tr>
<td>K-S modif.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>74%</td>
<td>0.5%</td>
<td>62%</td>
<td>76%</td>
<td>92%</td>
</tr>
<tr>
<td>Good</td>
<td>4%</td>
<td>0.2%</td>
<td>8%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>No</td>
<td>22%</td>
<td>99%</td>
<td>30%</td>
<td>22%</td>
<td>7%</td>
</tr>
<tr>
<td>A-D modif.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>39%</td>
<td>0.4%</td>
<td>73%</td>
<td>79%</td>
<td>87%</td>
</tr>
<tr>
<td>Good</td>
<td>5%</td>
<td>0.3%</td>
<td>13%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>No</td>
<td>56%</td>
<td>99%</td>
<td>14%</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>
CLASSIFICATION SCHEME FIT

Figure: Syntetos et al. (2012)

Fit:
D1: 85%
D2: 68%

K-S modif.
FITTING LEAD TIME DEMAND – DATASET 2

<table>
<thead>
<tr>
<th></th>
<th>Poisson</th>
<th>Normal</th>
<th>Gamma</th>
<th>NBD</th>
<th>Stutt. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-S classic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>31%</td>
<td>4%</td>
<td>5%</td>
<td>59%</td>
<td>75%</td>
</tr>
<tr>
<td>Good</td>
<td>4%</td>
<td>7%</td>
<td>7%</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>No</td>
<td>65%</td>
<td>89%</td>
<td>88%</td>
<td>32%</td>
<td>15%</td>
</tr>
<tr>
<td>K-S modif.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>26%</td>
<td>3%</td>
<td>16%</td>
<td>37%</td>
<td>45%</td>
</tr>
<tr>
<td>Good</td>
<td>4%</td>
<td>5%</td>
<td>13%</td>
<td>11%</td>
<td>13%</td>
</tr>
<tr>
<td>No</td>
<td>70%</td>
<td>92%</td>
<td>70%</td>
<td>52%</td>
<td>42%</td>
</tr>
<tr>
<td>A-D modif.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str.</td>
<td>16%</td>
<td>6%</td>
<td>37%</td>
<td>60%</td>
<td>62%</td>
</tr>
<tr>
<td>Good</td>
<td>6%</td>
<td>10%</td>
<td>22%</td>
<td>14%</td>
<td>19%</td>
</tr>
<tr>
<td>No</td>
<td>78%</td>
<td>84%</td>
<td>41%</td>
<td>26%</td>
<td>19%</td>
</tr>
</tbody>
</table>
• Inventory-up-to policy with backordering
• SBA method
• Initialization time: 4 years (48 obs.)

• 9 implemented policies:
 • Poisson
 • Normal
 • Gamma
 • NBD
 • StuttP
 • BestKSClassic
 • BestKSModified
 • BestADModified
 • ClassificationRule

• Classic version + Teunter and Duncan’ s correction:
 \[\hat{L} = \hat{x} \times L \]
 \[\hat{L} = \hat{z} + \hat{x}(L - 1) \]
 \[\hat{L} = \hat{x} \times \sqrt{L} \]
Efficacy of Inventory Policies

Achieved Service Level

Target Service Level

Classic version

Teunter and Duncan’s correction

June 29, 2016

Spare parts inventory management: new evidence from distribution fitting
Average inventory on hand vs. Achieved Service Level

- Poisson
- Normal
- Gamma
- NBD
- StuTP
- BestKSClassic
- BestKSMODified
- BestADModified
- ClassificationRule
Achieved Service Level

Average inventory on hand

- Poisson
- Normal
- Gamma
- NBD
- StuttP
- BestKSClassic
- BestKSModified
- BestADModified
- ClassificationRule
Achieved Service Level

Average inventory on hand

- Poisson
- Normal
- Gamma
- NBD
- StuttP
- BestKSClassic
- BestKSModified
- BestADMModified
- ClassificationRule
Spare parts inventory management: new evidence from distribution fitting

June 29, 2016

Achieved Service Level

Average inventory on hand

Achieved Service Level
Achieved Service Level

Average inventory on hand

- Poisson
- Normal
- Gamma
- NBD
- StuttP
- BestKSClassic
- BestKSModified
- BestADMModified
- ClassificationRule
Achieved Service Level

Average inventory on hand

- Poisson
- Normal
- Gamma
- NBD
- StuttP
- BestKSClassic
- BestKSModified
- BestADMModified
- ClassificationRule
CONCLUSIONS AND FURTHER RESEARCH

• Distribution of demand per period mostly fits compound Poisson distributions.

• Lead time demand also mostly fits compound distributions, but results are worse using the modified tests – Right to use for inventory?

• BestKSModified policy is the most efficient EXCEPT for very high service levels (over 94%), where BestADModified is better.

• Need for classification rules for inventory applications.
THANK YOU FOR YOUR ATTENTION!