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Business problem

A global tire manufacturer wants to improve its tactical sales forecasting
with external data, obtaining insight in the main relevant leading indicators
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Motivation long-term forecasting

Global supply chains need long-term forecasting for decision making
(procurement, production scheduling and capacity planning)

External data is often available (public & expert sources)

Incorporating field knowledge via judgement: inconsistent & bias

Combining univariate and exogenous information (Huang et al. ,
2014) (Leitner et al. , 2011)

Belief in external leading indicators

National economic conjuncture is a leading for tire sales:

Economic Growth↗ ⇒ Road Transport ↗ ⇒ Tire Production↗
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Leading Indicator Example: Tires for passenger cars (US)

The amount of newly registered cars (blue) is a leading indicator to the
sudden drop (bold) in car tire sales (US) during the economic crisis of
2009-2010.
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Insight in case study data

EU − Passenger Tires
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Methodology: the curses of leading indicators

Curse of dimensionality

Short fat data problem

p > n : much more predictors than training sample

Curse of optimal leading effect

Leading indicators exhibit leading information in advance

pl � n : detecting optimal lead expands dimensionality

Curse of missing future information

Indicators only exhibit information up to a certain point in time

Clear need for unconditional forecasting
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Methodology: LASSO regression

Least Absolute Shrinkage Selection Operator (Tibshirani, 1996)

n∑
i=1

yi − β0 −
p∑

j=1

βjxij
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+ λ

p∑
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|βj |

Advantages (Bai and Ng, 2008) (Li and Chen, 2014) (Iturbide, 2013)

Works with p > n

Shrinking coefficients

Variable selection

Model problems

Include univariate information

Choosing and optimising Lambda
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Methodology: LASSO regression

LASSO shrinks coefficients to zero and selects predictors
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Methodology

Forecast horizon 1 5 12
Lags 1-12 5-12 12
Number of variables 814,212 542,808 67,851
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Forecasting results

LASSO can improve on company benchmark and ETS, but deteriorates
over long horizons
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Model MAPE
Naive 17.2
Holt-Winters 18.6
Exponential Smoothing (ETS) 15.3
LASSO 15.2
Oracle LASSO 13.8

Final model contains:

Relevant
indicators

Leading effect

8-15 variables
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