

The value of external information: including leading indicators in sales forecasting

Yves R. Sagaert Nikolaos Kourentzes El-Houssaine Aghezzaf Bram Desmet

> Ghent University Lancaster Centre for Forecasting Solventure

Research seminar May 25, 2016 - St. Petersburg

イロト イヨト イヨト イヨト

- 2

Business problem

A global tire manufacturer wants to improve its tactical sales forecasting with external data, obtaining insight in the main relevant leading indicators

<ロ> (日) (日) (日) (日) (日)

Motivation long-term forecasting

- Global supply chains need long-term forecasting for decision making (procurement, production scheduling and capacity planning)
- External data is often available (public & expert sources)
- Incorporating field knowledge via judgement: inconsistent & bias
- Combining univariate and exogenous information (Huang et al. , 2014) (Leitner et al. , 2011)

Belief in external leading indicators

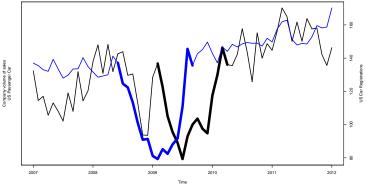
National economic conjuncture is a leading for tire sales:

Economic Growth $\nearrow \Rightarrow$ Road Transport $\nearrow \Rightarrow$ Tire Production \nearrow

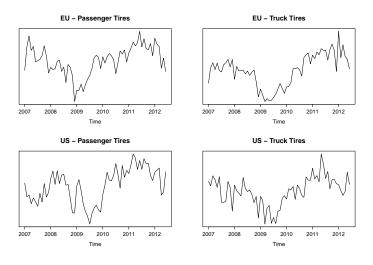
イロト 不得 トイヨト イヨト 二日

Leading Indicator Example: Tires for passenger cars (US)

The amount of newly registered cars (blue) is a leading indicator to the sudden drop (bold) in car tire sales (US) during the economic crisis of 2009-2010.



Insight in case study data



2

イロト イヨト イヨト イヨト

Methodology: the curses of leading indicators

Curse of dimensionality

- Short fat data problem
- \bullet p > n : much more predictors than training sample

Curse of optimal leading effect

- Leading indicators exhibit leading information in advance
- $\bullet\,$ pl \gg n : detecting optimal lead expands dimensionality

Curse of missing future information

- Indicators only exhibit information up to a certain point in time
- Clear need for unconditional forecasting

イロト 不得 トイヨト イヨト

Methodology: LASSO regression

Least Absolute Shrinkage Selection Operator (Tibshirani, 1996)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Advantages (Bai and Ng, 2008) (Li and Chen, 2014) (Iturbide, 2013)

- Works with p > n
- Shrinking coefficients
- Variable selection

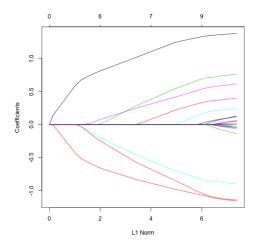
Model problems

- Include univariate information
- Choosing and optimising Lambda

イロト イポト イヨト イヨト

Methodology: LASSO regression

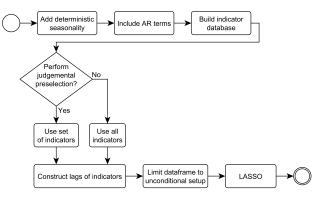
LASSO shrinks coefficients to zero and selects predictors



2

イロト イヨト イヨト イヨト

Methodology

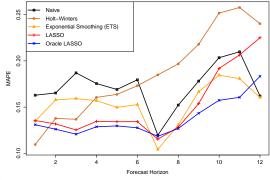


Forecast horizon	1	5	12
Lags	1-12	5-12	12
Number of variables	814,212	542,808	67,851

<ロ> <回> <回> <回> <回> <回> < => < => < =>

Forecasting results

LASSO can improve on company benchmark and ETS, but deteriorates over long horizons



Model	MAPE
Naive	17.2
Holt-Winters	18.6
Exponential Smoothing (ETS)	15.3
LASSO	15.2
Oracle LASSO	13.8

Final model contains:

- Relevant indicators
- Leading effect
- 8-15 variables

・ロト ・回ト ・ヨト ・ヨト

3