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Finite Case

Let G be a finite group,

we set B(G ), the Burnside ring of G , to be the ring of all finite
G -sets with operations

X + Y = X t Y

X × Y = Cartesian product

0 = ∅
1 = G/G .

It is useful to note that

B(G ) = spanZ{G/H|H ≤ G}.
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Finite Case

Let G be a finite group and B(G ) its Burnside Ring.

Definition
Set

ϕU : B(G ) −→ Z

ϕU(X ) = |XU |

Let PU,p = {X ∈ B(G ) | ϕU(X ) ≡ 0 mod p}, p a prime or 0.
Establish an order on transitive G -sets by G/H � G/K ⇔ H . K .

Theorem (Dress ’69)

Let P be a prime ideal of B(G ), then P = PU,p for some U ≤ G.
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Theorem (Dress ’69)

1. Let P be a prime ideal of B(G ), then P = PU,p for some
U ≤ G.

2. There is a unique minimal G/H ∈ B(G )\P.

3. P = PH,p where p = char(B(G )/P).

Sketch of proof (2.).

Suppose that there is no unique minimal element in B(G )\P, then
suppose that G/H and G/K are both minimal

G/H × G/K =
∑

g∈[H\G/K ]

G/(H ∩ gK ) /∈ P.

At least one of these summands must not be in P, and since
G/(H ∩ gK ) � G/H,G/K , we have a contradiction unless
G/H = G/K and so we have proved 2.
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Sketch of proof (3.)

Suppose P = PU,0,

G/H ∈ P ⇒ ϕU(G/H) = 0

⇒ G/H /∈ P ⇒ ϕU(G/H) 6= 0

ϕU(G/H) = |{gH|u.gH = gH, ∀u ∈ U}|
= |{gH|g−1ugH = H, ∀u ∈ U}|
= |{gH|UgH = H}|
= |{gH|Ug ≤ H}|

⇒ ϕU(G/H) 6= 0⇔ U . H.
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ϕU(G/H) 6= 0⇔ U . H.

⇒ the minimal element with this property is G/U.

Now consider P = PU,p for p a prime, let the minimal transitive
G -set not in P be given by G/W ,

⇒ ϕU(X ) ≡ ϕW (X ) mod p ∀X ∈ B(G )

and

ϕU(G/W ) ≡ ϕW (G/W ) = |NG (W ) : W | 6≡ 0 mod p

since G/W /∈ P.
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The rest of the argument follows from taking the following
diagram and showing each step is well defined.
Take Up to be the smallest subgroup of U such that U/Up is a
p-group,

we then take

NG (Up) NG (Up)/Up

U W S

Up 1

where S is a Sylow-p-subgroup of NG (Up)/Up, W the preimage of
S and the arrows are the quotient map.
From this we conclude that PU,p = PW ,p.

7 / 19



The rest of the argument follows from taking the following
diagram and showing each step is well defined.
Take Up to be the smallest subgroup of U such that U/Up is a
p-group, we then take

NG (Up) NG (Up)/Up

U W S

Up 1

where S is a Sylow-p-subgroup of NG (Up)/Up, W the preimage of
S and the arrows are the quotient map.
From this we conclude that PU,p = PW ,p.

7 / 19



The rest of the argument follows from taking the following
diagram and showing each step is well defined.
Take Up to be the smallest subgroup of U such that U/Up is a
p-group, we then take

NG (Up) NG (Up)/Up

U W S

Up 1

where S is a Sylow-p-subgroup of NG (Up)/Up, W the preimage of
S and the arrows are the quotient map.

From this we conclude that PU,p = PW ,p.

7 / 19



The rest of the argument follows from taking the following
diagram and showing each step is well defined.
Take Up to be the smallest subgroup of U such that U/Up is a
p-group, we then take

NG (Up) NG (Up)/Up

U W S

Up 1

where S is a Sylow-p-subgroup of NG (Up)/Up, W the preimage of
S and the arrows are the quotient map.
From this we conclude that PU,p = PW ,p.

7 / 19



Burnside Ring of a profinite group

Definition
Let G = lim←−i∈I (Gi ) be a profinite group,

then we say that X , a
G -space, is almost finite if

ϕU(X ) <∞ ∀U ≤O G .

and X is discrete.

Definition
For G a profinite group, we take B̂(G ), the completed Burnside
ring of G to be the ring of almost finite G -spaces.
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Profinite case

The main problems with these arguments when it comes to infinite
groups are

1. The requirement for there to be a unique minimal transitive
G -space not in the prime ideal,

2. That Up may not be open.

9 / 19



Profinite case

The main problems with these arguments when it comes to infinite
groups are

1. The requirement for there to be a unique minimal transitive
G -space not in the prime ideal,

2. That Up may not be open.

9 / 19



Profinite case

However, we do have the same result below (the proof is similar to
the finite case), with the same ordering as before.

Lemma
Let P be a prime ideal in B̂(G ). Then the set

{G/H|H ≤O G ,G/H /∈ P}

has at most one minimal element, if any exist.

In the case one does exist then for this minimal T = G/U we have

P = {X ∈ B̂(G )|ϕU(X ) ≡ 0 mod p}

where p is the characteristic of the quotient ring.
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Profinite case

Proof.
As discussed the minimal element argument is nearly identical to
the finite case. The remainder of the argument is as follows.

Let
T = G/U be the minimal element as above, X ∈ B̂(G )

T × X = ϕU(X )T +
∑
K.U

mHG/K

≡ ϕU(X )T mod P.

X ∈ P ⇔ ϕU(X ) ≡ 0 mod char(B̂(G )/P)

⇔ X ∈ {Y |ϕU(X ) ≡ 0 mod p}.
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Corollary

If P is a prime ideal such that there exists an infinite chain of the
form {G/H|H ≤O G ,G/H /∈ P} then this set has no minimum.

In particular, it cannot be described in the way that we have
described the other ideals, and so we start to separate from the
finite case.

Definition
If P is a prime ideal of B̂(G ) for some profinite group G , then we
call P large if there is a minimal G/H /∈ P and small otherwise.
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Theorem
If K EO G ,H ≤O G and |[G/HK ]|G/G /∈ P then

1. K ≤ H,G/K /∈ P ⇒ G/H /∈ P,

2. H ≤ K ,G/K ∈ P ⇒ G/H ∈ P.

Proof.

G/H × G/K =
∑

g∈[H\G/K ]

G/(H ∩ gK )

=
∑

g∈[H\G/K ]

G/(H ∩ K )

= |[H\G/K ]|G/(H ∩ K )
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For K ≤ H, G/(H ∩ K ) = G/K and vice versa.

Since P is prime
then we have

|[H\G/K ]|G/(H∩K ) ∈ P ⇒ |[H\G/K ]|G/G ∈ P or G/(H∩K ) ∈ P.

This proves the second statement and the first follows from a
simple contradiction.
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Example

Let G = Zp, then we have that

PH,0 = {X |ϕH(X ) = 0}

Since Zp is Abelian,

ϕH(G/K ) =

{
|G : K | if H ≤ K

0 otherwise.

⇒ PH,0 = spanZ{G/K |H 6≤ K}+{X |ϕH(X ) = 0, X =
∑
H≤K

G/K XK}

PH,0 = spanZ{G/K |H 6≤ K}+ {X |0 =
∑
H≤K

|G : K | XK}
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Example

0 =
∑

H≤K |G : K |XK is written as an integral polynomial in p.
For any Abelian pro-p group, the prime ideals defined as PU,p are
all equal to PG ,p, with G/G the only transitive G -space not in the
ideal.

PU,p = spanZ{G/K |K <O G}+ pZG/G .
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Theorem
Let G be an abelian pro-p group, then the large prime ideals of
B̂(G ) are given by

1. PU,0,U ≤O G ,

2. PG ,p

3. PU,q,U ≤O G .

In fact we can increase the strength of this to any pro-p group that
has no self normalizing subgroups since

|NG (K ) : K | divides ϕU(G/K )

⇒ p 6 |ϕU(G/K )⇒ NG (K ) = K . This observation allows us to
extend to any pro-p group.

Theorem (H.)

The above theorem holds for any pro-p group.
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As for the small prime ideals, whether they exist or not is unknown,
but the following results are advancing towards researching this.

Lemma
For P a small prime ideal, then there does not exist N EO G such
that ker(FixGN)⊆ P.
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Application

Theorem (H.)

Let F be a pro-fusion system over S given by FS(G ) such that
S ≤O G, then we have resGS (B̂(G )) = B̂(F).

Theorem (H.)

Let F be a (pro-)fusion system over S given by F = FS(G ) such
that S ≤O G. Then we have that B̂(F) ∼= B̂(G )/

⋂
H.FS PH,0.

An additional result in the finite case is that a group G is solvable
if and only if the spectrum is connected which is if and only if 0
and 1 are the only idempotents in B̂(G ). A similar result may be
possible in the infinite case.
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