A Cartan-Eilenberg stable elements formula for cohomological Mackey 2-Functors

Burnside and Mackey functors revisited

Jun Maillard Université Jean Monnet (Saint-Étienne)

28 September 2021

Overview

G a finite group, S a p-Sylow subgroup of G.

Overview

G a finite group, S a p-Sylow subgroup of G.

• For a Mackey functor M,

$$M(G) \cong \lim_{P \in \mathcal{F}_{\mathcal{S}}(G)^{\operatorname{op}}} M(P).$$

M(G), M(P) are abelian groups.

Overview

G a finite group, S a p-Sylow subgroup of G.

• For a Mackey functor *M*,

$$M(G) \cong \lim_{P \in \mathcal{F}_{\mathcal{S}}(G)^{\mathsf{op}}} M(P).$$

M(G), M(P) are abelian groups.

• For a Mackey 2-functor \mathbb{M} ,

$$\mathbb{M}(G) \simeq \underset{P \in \mathcal{O}_{S}(G)^{\mathrm{op}}}{\mathrm{bilim}} \mathbb{M}(P).$$

 $\mathbb{M}(G), \mathbb{M}(P)$ are additive categories.

Cohomological Mackey 2-functors

1 The classical Cartan-Eilenberg formula

2 The Cartan-Eilenberg formula for Mackey 2-functors

3 *p*-monadic Mackey 2-functors and 2-sheaves

1 The classical Cartan-Eilenberg formula

2 The Cartan-Eilenberg formula for Mackey 2-functors

3 *p*-monadic Mackey 2-functors and 2-sheaves

Definition

A global Mackey functor M is a pair of functors $M^* \colon gp^{op} \to Ab$ and $M_* \colon gp^f \to Ab$ satisfying:

Definition

A global Mackey functor M is a pair of functors $M^* \colon gp^{op} \to Ab$ and $M_* \colon gp^f \to Ab$ satisfying:

• for any group G, $M^*(G) = M_*(G) = M(G)$

Definition

A global Mackey functor M is a pair of functors $M^* \colon gp^{op} \to Ab$ and $M_* \colon gp^f \to Ab$ satisfying:

- for any group G, $M^*(G) = M_*(G) = M(G)$
- 2 for any isomorphism of groups $c \colon H \to K$, $M^*(c)^{-1} = M_*(c)$

Definition

A global Mackey functor M is a pair of functors $M^* \colon gp^{op} \to Ab$ and $M_* \colon gp^f \to Ab$ satisfying:

- for any group G, $M^*(G) = M_*(G) = M(G)$
- 2 for any isomorphism of groups $c \colon H \to K$, $M^*(c)^{-1} = M_*(c)$
- ${f S}$ for any inner automorphism $c_g\colon G o G,\ M^*(c_g)={\sf Id}_{M(G)}$

Definition

A global Mackey functor M is a pair of functors $M^* \colon gp^{op} \to Ab$ and $M_* \colon gp^f \to Ab$ satisfying:

- for any group G, $M^*(G) = M_*(G) = M(G)$
- 3 for any isomorphism of groups $c \colon H \to K$, $M^*(c)^{-1} = M_*(c)$
- ${f S}$ for any inner automorphism $c_g\colon G o G,\ M^*(c_g)={\sf Id}_{M(G)}$
- **(**) for any inclusions of groups $i: H \to G$ and $j: K \to G$:

$$M^*(j)M_*(i) = \sum_{KgH \in K \setminus G/H} M_*(i_{K \cap gHg^{-1}})M_*(c_g)M^*(j_{g^{-1}Kg \cap H})$$

where

 $\begin{array}{l} j_{g^{-1}Kg\cap H}\colon g^{-1}Kg\cap H\to H \text{ and } i_{K\cap gHg^{-1}}\colon K\cap gHg^{-1}\to K \text{ are the}\\ \text{natural inclusions}\\ c_g\colon g^{-1}Kg\cap H\to K\cap gHg^{-1} \text{ is the conjugation by } g \end{array}$

Notation

- By a slight abuse of notation, the contravariant part of a Mackey functor *M* will also be denoted by *M*.
- The image of morphisms by the contravariant and covariant parts of a Mackey functor *M* are respectively noted

$$i^* = M^*(i)$$
 and $i_* = M_*(i)$

Cohomological Mackey functors

Definition

A global Mackey functor $M: gp^{op} \to Ab$ is said to be cohomological if, for any inclusion of groups $i: H \to G$,

 $i^*i_* = [G : H] \operatorname{Id}_{M(G)}$

Cohomological Mackey functors

Definition

A global Mackey functor $M: gp^{op} \to Ab$ is said to be cohomological if, for any inclusion of groups $i: H \to G$,

$$i^*i_* = [G : H] \operatorname{Id}_{M(G)}$$

Example

The following functors are global cohomological Mackey functors:

- $H^*(-,\mathbb{Z})$, the (usual) group cohomology
- $H_*(-,\mathbb{Z})$, the (usual) group homology
- $\hat{H}^*(-,\mathbb{Z})$, the Tate cohomology

The Cartan-Eilenberg stable elements formula

From now on, we fix a prime p.

Theorem (Cartan-Eilenberg, 1956)

Let $M: \operatorname{gp}^{\operatorname{op}} \to \mathbb{Z}_{(p)}$ -Mod be a global cohomological Mackey functor taking values in $\mathbb{Z}_{(p)}$ -modules. Then for any group G and p-Sylow subgroup S of G, there is a canonical isomorphism

$$M(G) \cong \lim_{P \in \mathcal{F}_{\mathcal{S}}(G)^{\mathrm{op}}} M(P)$$

The Cartan-Eilenberg stable elements formula

From now on, we fix a prime p.

Theorem (Cartan-Eilenberg, 1956)

Let $M: \operatorname{gp}^{\operatorname{op}} \to \mathbb{Z}_{(p)}$ -Mod be a global cohomological Mackey functor taking values in $\mathbb{Z}_{(p)}$ -modules. Then for any group G and p-Sylow subgroup S of G, there is a canonical isomorphism

$$M(G) \cong \lim_{P \in \mathcal{F}_{\mathcal{S}}(G)^{\mathrm{op}}} M(P)$$

Proof.

There is an explicit description of the limit:

$$\begin{split} \lim_{P\in\mathcal{F}_{\mathcal{S}}(G)^{\mathsf{op}}} M(P) &= \{x\in M(\mathcal{S}) \mid \\ &\quad \forall H, K\subset \mathcal{S}, g\in G \text{ s.t. } gHg^{-1}\subset K, (c_g)_*(x_{|K}) = x_{|H} \} \end{split}$$

Proof.

The canonical morphism $M(G) \to \lim_{P \in \mathcal{F}_{S}(G)^{op}} M(P)$ is induced by the restriction i^* along the inclusion $i: S \to G$.

Proof.

The canonical morphism $M(G) \to \lim_{P \in \mathcal{F}_{S}(G)^{\operatorname{op}}} M(P)$ is induced by the restriction i^{*} along the inclusion $i \colon S \to G$. For any $x \in \lim_{P \in \mathcal{F}_{S}(G)^{\operatorname{op}}} M(P)$,

$${}^{*}i_{*}(x) = \sum_{g \in S \setminus G/S} (i_{S \cap gSg^{-1}})_{*}(c_{g})_{*}i_{S \cap g^{-1}Sg}^{*}(x)$$

= $\sum_{g \in S \setminus G/S} (i_{S \cap gSg^{-1}})_{*}i_{S \cap gSg^{-1}}^{*}(x)$
= $\sum_{g \in S \setminus G/S} [S : S \cap gSg^{-1}]x = [G : S]x$

Proof.

The canonical morphism $M(G) \to \lim_{P \in \mathcal{F}_{S}(G)^{\operatorname{op}}} M(P)$ is induced by the restriction i^{*} along the inclusion $i \colon S \to G$. For any $x \in \lim_{P \in \mathcal{F}_{S}(G)^{\operatorname{op}}} M(P)$,

and for any $y \in M(G)$,

$$i_*i^*(x) = [G : S]x$$

Since [G : S] is prime to p, the morphism induced by i^* is an isomorphism.

The classical Cartan-Eilenberg formula

2 The Cartan-Eilenberg formula for Mackey 2-functors

3 *p*-monadic Mackey 2-functors and 2-sheaves

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor $\mathbb M$ is a contravariant 2-functor

 $\mathbb{M}\colon \mathbf{gpd}^{\mathsf{op}}\to \mathbf{Add}$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor $\mathbb M$ is a contravariant 2-functor

 $\mathbb{M}\colon \mathbf{gpd}^{\mathsf{op}}\to \mathbf{Add}$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:

(Additivity) For any groupoids G and H, the canonical morphism

 $\mathbb{M}(G\sqcup H)\to\mathbb{M}(G)\oplus\mathbb{M}(H)$

is an equivalence.

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor M is a contravariant 2-functor

 $\mathbb{M}\colon \mathbf{gpd}^{\mathsf{op}}\to \mathbf{Add}$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:

(Additivity) For any groupoids G and H, the canonical morphism

 $\mathbb{M}(G\sqcup H)\to\mathbb{M}(G)\oplus\mathbb{M}(H)$

is an equivalence.

(Adjoints) For any faithful morphism of groupoids i: H → G, the image i* = M(i) has a left adjoint i₁ and a right adjoint i∗

$$i_! \dashv i^* \dashv i_*$$

Definition

(Beck-Chevalley property) For any bipullback square of groupoids

$$\begin{array}{cccc}
L & \stackrel{u}{\longrightarrow} H \\
\downarrow & \swarrow & \downarrow j \\
K & \stackrel{v}{\longrightarrow} G
\end{array}$$

the following pasting diagram define an isomorphism $v^*j_*\simeq i_*u^*$

$$\mathbb{M}(K) \xleftarrow{i_{*}} \mathbb{M}(L) \xleftarrow{u^{*}} \mathbb{M}(H)$$

$$\stackrel{\eta}{\longrightarrow} i^{*} \uparrow \stackrel{\sim}{\longrightarrow} j^{*} \uparrow \stackrel{\epsilon}{\longrightarrow}$$

$$\mathbb{M}(K) \xleftarrow{v^{*}} \mathbb{M}(G) \xleftarrow{j_{*}} \mathbb{M}(H)$$

(and the corresponding left property)

Definition

(Beck-Chevalley property) For any bipullback square of groupoids

$$\begin{array}{cccc}
L & \stackrel{u}{\longrightarrow} H \\
\downarrow & \swarrow & \downarrow j \\
K & \stackrel{v}{\longrightarrow} & G
\end{array}$$

the following pasting diagram define an isomorphism $v^*j_*\simeq i_*u^*$

$$\mathbb{M}(K) \xleftarrow{i_{*}} \mathbb{M}(L) \xleftarrow{u^{*}} \mathbb{M}(H)$$

$$\stackrel{\eta}{\longrightarrow} i^{*} \uparrow \stackrel{\sim}{\longrightarrow} j^{*} \uparrow \stackrel{\epsilon}{\longrightarrow}$$

$$\mathbb{M}(K) \xleftarrow{v^{*}} \mathbb{M}(G) \xleftarrow{j_{*}} \mathbb{M}(H)$$

(and the corresponding left property)

(Ambidexterity) For any faithful morphism of groupoids $i: H \to G$,

$$i_{!} \simeq i^{*}$$

Cohomological Mackey 2-functors

Definition (Balmer-Dell'Ambrogio 2021)

A (rectified) Mackey 2-functor \mathbb{M} is cohomological if for any inclusion of groups (= connected groupoids) $i: H \to G$,

$$\mathsf{Id}_{\mathbb{M}(G)} \stackrel{\eta}{\Rightarrow} i_! i^* \stackrel{\mathsf{Id}}{\Longrightarrow} i_* i^* \stackrel{\epsilon}{\Rightarrow} \mathsf{Id}_{\mathbb{M}(G)} = [G \colon H] \mathsf{Id}_{\mathsf{Id}_{\mathbb{M}(G)}}.$$

Cohomological Mackey 2-functors

Definition (Balmer-Dell'Ambrogio 2021)

A (rectified) Mackey 2-functor \mathbb{M} is cohomological if for any inclusion of groups (= connected groupoids) $i: H \to G$,

$$\mathsf{Id}_{\mathbb{M}(G)} \stackrel{\eta}{\Rightarrow} i_! i^* \stackrel{\mathsf{Id}}{\Longrightarrow} i_* i^* \stackrel{\epsilon}{\Rightarrow} \mathsf{Id}_{\mathbb{M}(G)} = [G \colon H] \mathsf{Id}_{\mathsf{Id}_{\mathbb{M}(G)}}.$$

Example

The following mappings define cohomological Mackey 2-functors $\mathbb{M}:$

- $\mathbb{M}(G) = \operatorname{mod}(\Bbbk G)$, the category of modules on G.
- $\mathbb{M}(G) = D(\Bbbk G)$, the derived category of modules on G.
- M(G) = coMack(G), the category of G-local cohomological Mackey functors.

p-Monadic Mackey 2-functors

Definition

A Mackey 2-functor is *p*-monadic if for any inclusion of groups $i: H \to G$ of index prime to *p*, the adjunction $i_! \dashv i^*$ is monadic, that is, the canonical morphism

 $\mathbb{M}(G) \to \mathbb{M}(H)^{i^*i_!}$

to the category of Eilenberg-Moore of the monad $i^*i_!$ is an equivalence.

p-Monadic Mackey 2-functors

Definition

A Mackey 2-functor is *p*-monadic if for any inclusion of groups $i: H \to G$ of index prime to *p*, the adjunction $i_! \dashv i^*$ is monadic, that is, the canonical morphism

 $\mathbb{M}(G) \to \mathbb{M}(H)^{i^*i_!}$

to the category of Eilenberg-Moore of the monad $i^*i_!$ is an equivalence.

Proposition (Balmer-Dell'Ambrogio 2021)

Let \mathbb{M} be a cohomological Mackey 2-functor taking values in $\mathbb{Z}_{(p)}$ -linear and idempotent-complete categories. Then \mathbb{M} is p-monadic.

Theorem (M., 2021)

Let \mathbb{M} be a *p*-monadic Mackey 2-functor. Then for any group G with *p*-Sylow S, there is a canonical equivalence

 $\mathbb{M}(G) \simeq \underset{P \in \mathcal{O}_{\mathcal{S}}(G)^{\mathsf{op}}}{\mathsf{bilim}} \mathbb{M}(P)$

Theorem (M., 2021)

Let \mathbb{M} be a *p*-monadic Mackey 2-functor. Then for any group G with *p*-Sylow S, there is a canonical equivalence

$$\mathbb{M}(G) \simeq \underset{P \in \mathcal{O}_{S}(G)^{\mathsf{op}}}{\mathsf{bilim}} \mathbb{M}(P)$$

Proof.

• By *p*-monadicity, there is an equivalence $\mathbb{M}(G) \simeq \mathbb{M}(S)^{i^* i_i}$, where $i: S \to G$ is the canonical inclusion.

Theorem (M., 2021)

Let \mathbb{M} be a *p*-monadic Mackey 2-functor. Then for any group G with *p*-Sylow S, there is a canonical equivalence

$$\mathbb{M}(G) \simeq \underset{P \in \mathcal{O}_{S}(G)^{\mathsf{op}}}{\mathsf{bilim}} \mathbb{M}(P)$$

Proof.

- By *p*-monadicity, there is an equivalence $\mathbb{M}(G) \simeq \mathbb{M}(S)^{i^* i_i}$, where $i: S \to G$ is the canonical inclusion.
- By the Bénabou-Roubaud theorem, M(S)^{i*i}∗ is equivalent to the bilimit of M over a descent diagram.

Theorem (M., 2021)

Let \mathbb{M} be a *p*-monadic Mackey 2-functor. Then for any group G with *p*-Sylow S, there is a canonical equivalence

$$\mathbb{M}(G) \simeq \underset{P \in \mathcal{O}_{S}(G)^{\mathsf{op}}}{\mathsf{bilim}} \mathbb{M}(P)$$

Proof.

- By *p*-monadicity, there is an equivalence $\mathbb{M}(G) \simeq \mathbb{M}(S)^{i^* i_i}$, where $i: S \to G$ is the canonical inclusion.
- By the Bénabou-Roubaud theorem, M(S)^{i*i}∗ is equivalent to the bilimit of M over a descent diagram.
- By a 2-finality argument, the descent diagram can be replaced by the orbit category $\mathcal{O}_S(G)$ in the bilimit.

The classical Cartan-Eilenberg formula

2 The Cartan-Eilenberg formula for Mackey 2-functors

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Questions:

• Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ?
- Are all *p*-monadic Mackey 2-functors cohomological ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ?
- Are all *p*-monadic Mackey 2-functors cohomological ?

Answer: p-monadic Mackey 2-functors are 2-sheaves, they satisfy a gluing condition with respect to the inclusion maps of order prime to p.

2-Sheaves on finite groupoids

Proposition

The 2-category **gpd** of finite groupoids is endowed with a 2-topology of Grothendieck, the *p*-local topology:

- A covering morphism of a group G is a morphism $i: H \rightarrow G$ of index prime to p.
- These morphisms satisfy a stability property (slightly weaker than stability by bipullbacks)

2-Sheaves on finite groupoids

Proposition

The 2-category **gpd** of finite groupoids is endowed with a 2-topology of Grothendieck, the *p*-local topology:

- A covering morphism of a group G is a morphism i: H → G of index prime to p.
- These morphisms satisfy a stability property (slightly weaker than stability by bipullbacks)

Proposition

The restriction from the 2-category of 2-sheaves on finite groupoids with the p-local topology to the 2-category of 2-sheaves on finite p-groupoids (with the induced topology).

 $\mathsf{Sh}(\mathsf{gpd}) \to \mathsf{Sh}(\textit{p-gpd})$

is a biequivalence.

Mackey 2-functors as 2-sheaves

Theorem

Let \mathbb{M} : $gpd^{op} \rightarrow Add$ be a 2-functor whose restriction to p-groupoids is a Mackey 2-functor. Then the following statements are equivalent:

- M is a p-monadic Mackey 2-functor.
- \mathbb{M} is a 2-sheaf for the p-local topology on the 2-category of groupoids.

Mackey 2-functors as 2-sheaves

Theorem

Let \mathbb{M} : $gpd^{op} \rightarrow Add$ be a 2-functor whose restriction to p-groupoids is a Mackey 2-functor. Then the following statements are equivalent:

- M is a p-monadic Mackey 2-functor.
- \mathbb{M} is a 2-sheaf for the p-local topology on the 2-category of groupoids.

Corollary

The restriction

```
2\mathsf{Mack}_{p}(\mathbf{gpd}) \rightarrow 2\mathsf{Mack}(p\text{-}\mathbf{gpd})
```

of *p*-monadic Mackey 2-functor on groupoids to *p*-groupoids is a biequivalence of 2-categories.

• Can we recover the whole *p*-monadic Mackey from its restriction to *p*-groupoids ?

• Can we recover the whole *p*-monadic Mackey from its restriction to *p*-groupoids ?

Yes, by the biequivalence.

- Can we recover the whole *p*-monadic Mackey from its restriction to *p*-groupoids ?
 - Yes, by the biequivalence.
- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ?

- Can we recover the whole *p*-monadic Mackey from its restriction to *p*-groupoids ?
 - Yes, by the biequivalence.
- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ?
 - Yes, by the biequivalence.

• Can we recover the whole *p*-monadic Mackey from its restriction to *p*-groupoids ?

Yes, by the biequivalence.

- Does any Mackey 2-functor on finite *p*-groupoids define a *p*-monadic Mackey 2-functor on all finite groupoids ? Yes, by the biequivalence.
- Are all *p*-monadic Mackey 2-functors cohomological ?

No: any non-cohomological Mackey 2-functor on *p*-groupoids induce a *p*-monadic non-cohomological Mackey 2-functor.

Conclusion

- Notions and results from the theory of Mackey functors may be categorified to apply to Mackey 2-functors (in this presentation the notion of "cohomological" and the Cartan-Eilenberg formula).
- A *p*-monadic Mackey 2-functor is entirely determined by its restriction to *p*-groupoids.
- Looking at 2-sheaves over other classes of groups (for instance, profinite groups) may be interesting.