A Cartan-Eilenberg stable elements formula for cohomological Mackey 2-Functors

Burnside and Mackey functors revisited

Jun Maillard
Université Jean Monnet (Saint-Étienne)

28 September 2021

Overview

G a finite group, S a p-Sylow subgroup of G.

Overview

G a finite group, S a p-Sylow subgroup of G.

- For a Mackey functor M,

$$
M(G) \cong \lim _{P \in \mathcal{F}_{s}(G)^{\mathrm{op}}} M(P)
$$

$M(G), M(P)$ are abelian groups.

Overview

G a finite group, S a p-Sylow subgroup of G.

- For a Mackey functor M,

$$
M(G) \cong \lim _{P \in \mathcal{F}_{s}(G)^{\mathrm{op}}} M(P)
$$

$M(G), M(P)$ are abelian groups.

- For a Mackey 2-functor M,

$$
M(G) \simeq \operatorname{bilim}_{P \in \mathcal{O}_{s}(G)^{\mathrm{op}}} M(P)
$$

$M(G), M(P)$ are additive categories.

Cohomological Mackey 2-functors

(1) The classical Cartan-Eilenberg formula
(2) The Cartan-Eilenberg formula for Mackey 2-functors
(3) p-monadic Mackey 2-functors and 2-sheaves
(1) The classical Cartan-Eilenberg formula
(2) The Cartan-Eilenberg formula for Mackey 2-functors
(3) p-monadic Mackey 2-functors and 2-sheaves

Global Mackey functors

Definition

A global Mackey functor M is a pair of functors $M^{*}: g p^{o p} \rightarrow A b$ and $M_{*}: g p^{f} \rightarrow A b$ satisfying:

Global Mackey functors

Definition

A global Mackey functor M is a pair of functors $M^{*}: g p^{o p} \rightarrow A b$ and $M_{*}: \mathrm{gp}^{f} \rightarrow \mathrm{Ab}$ satisfying:
(1) for any group $G, M^{*}(G)=M_{*}(G)=M(G)$

Global Mackey functors

Definition

A global Mackey functor M is a pair of functors $M^{*}: g p^{o p} \rightarrow A b$ and $M_{*}: \mathrm{gp}^{f} \rightarrow \mathrm{Ab}$ satisfying:
(1) for any group $G, M^{*}(G)=M_{*}(G)=M(G)$
(2) for any isomorphism of groups $c: H \rightarrow K, M^{*}(c)^{-1}=M_{*}(c)$

Global Mackey functors

Definition

A global Mackey functor M is a pair of functors $M^{*}: g p^{o p} \rightarrow A b$ and $M_{*}: \mathrm{gp}^{f} \rightarrow \mathrm{Ab}$ satisfying:
(1) for any group $G, M^{*}(G)=M_{*}(G)=M(G)$
(2) for any isomorphism of groups $c: H \rightarrow K, M^{*}(c)^{-1}=M_{*}(c)$
(3) for any inner automorphism $c_{g}: G \rightarrow G, M^{*}\left(c_{g}\right)=\operatorname{ld}_{M(G)}$

Global Mackey functors

Definition

A global Mackey functor M is a pair of functors $M^{*}: g p^{o p} \rightarrow A b$ and $M_{*}: \mathrm{gp}^{\mathrm{f}} \rightarrow \mathrm{Ab}$ satisfying:
(1) for any group $G, M^{*}(G)=M_{*}(G)=M(G)$
(2) for any isomorphism of groups $c: H \rightarrow K, M^{*}(c)^{-1}=M_{*}(c)$
(3) for any inner automorphism $c_{g}: G \rightarrow G, M^{*}\left(c_{g}\right)=\operatorname{ld}_{M(G)}$
(4) for any inclusions of groups $i: H \rightarrow G$ and $j: K \rightarrow G$:

$$
M^{*}(j) M_{*}(i)=\sum_{K g H \in K \backslash G / H} M_{*}\left(i_{K \cap g H g^{-1}}\right) M_{*}\left(c_{g}\right) M^{*}\left(j_{g-1} K g \cap H\right)
$$

where

$$
j_{g^{-1} K g \cap H}: g^{-1} \mathrm{Kg} \cap H \rightarrow H \text { and } i_{K \cap g H g^{-1}}: K \cap g \mathrm{Hg}^{-1} \rightarrow K \text { are the }
$$ natural inclusions

$$
c_{g}: g^{-1} \mathrm{Kg} \cap H \rightarrow K \cap g \mathrm{Hg}^{-1} \text { is the conjugation by } g
$$

Global Mackey functors

Notation

- By a slight abuse of notation, the contravariant part of a Mackey functor M will also be denoted by M.
- The image of morphisms by the contravariant and covariant parts of a Mackey functor M are respectively noted

$$
i^{*}=M^{*}(i) \text { and } i_{*}=M_{*}(i)
$$

Cohomological Mackey functors

Definition

A global Mackey functor $M: \mathrm{gp}^{\mathrm{op}} \rightarrow \mathrm{Ab}$ is said to be cohomological if, for any inclusion of groups $i: H \rightarrow G$,

$$
i^{*} i_{*}=[G: H] \operatorname{ld}_{M(G)}
$$

Cohomological Mackey functors

Definition

A global Mackey functor $M: \mathrm{gp}^{\mathrm{op}} \rightarrow \mathrm{Ab}$ is said to be cohomological if, for any inclusion of groups $i: H \rightarrow G$,

$$
i^{*} i_{*}=[G: H] \operatorname{ld}_{M(G)}
$$

Example

The following functors are global cohomological Mackey functors:

- $H^{*}(-, \mathbb{Z})$, the (usual) group cohomology
- $H_{*}(-, \mathbb{Z})$, the (usual) group homology
- $\hat{H}^{*}(-, \mathbb{Z})$, the Tate cohomology

The Cartan-Eilenberg stable elements formula From now on, we fix a prime p.

Theorem (Cartan-Eilenberg, 1956)
Let $M: \mathrm{gpp}^{\mathrm{op}} \rightarrow \mathbb{Z}_{(p)}$-Mod be a global cohomological Mackey functor taking values in $\mathbb{Z}_{(p)}$-modules. Then for any group G and p-Sylow subgroup S of G, there is a canonical isomorphism

$$
M(G) \cong \lim _{P \in \mathcal{F}_{s}(G)^{\text {op }}} M(P)
$$

The Cartan-Eilenberg stable elements formula From now on, we fix a prime p.

Theorem (Cartan-Eilenberg, 1956)

Let $M: \mathrm{gpp}^{\mathrm{op}} \rightarrow \mathbb{Z}_{(p)}$-Mod be a global cohomological Mackey functor taking values in $\mathbb{Z}_{(p)}$-modules. Then for any group G and p-Sylow subgroup S of G, there is a canonical isomorphism

$$
M(G) \cong \lim _{P \in \mathcal{F}_{s}(G)^{\text {®p }}} M(P)
$$

Proof.

There is an explicit description of the limit:

$$
\begin{aligned}
\lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)= & \{x \in M(S) \mid \\
& \left.\forall H, K \subset S, g \in G \text { s.t. } g H g^{-1} \subset K,\left(c_{g}\right)_{*}\left(x_{\mid K}\right)=x_{\mid H}\right\}
\end{aligned}
$$

Proof.

The canonical morphism $M(G) \rightarrow \lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)$ is induced by the restriction i^{*} along the inclusion $i: S \rightarrow G$.

Proof.

The canonical morphism $M(G) \rightarrow \lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)$ is induced by the restriction i^{*} along the inclusion $i: S \rightarrow G$. For any $x \in \lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)$,

$$
\begin{aligned}
i^{*} i_{*}(x) & =\sum_{g \in S \backslash G / S}\left(i_{S \cap g S g^{-1}}\right)_{*}\left(c_{g}\right)_{*} i_{S \cap g^{-1} S g}^{*}(x) \\
& =\sum_{g \in S \backslash G / S}\left(i_{S \cap g S g^{-1}}\right)_{*} i_{S \cap g S g^{-1}}^{*}(x) \\
& =\sum_{g \in S \backslash G / S}\left[S: S \cap g S g^{-1}\right] x=[G: S] x
\end{aligned}
$$

Proof.

The canonical morphism $M(G) \rightarrow \lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)$ is induced by the restriction i^{*} along the inclusion $i: S \rightarrow G$. For any $x \in \lim _{P \in \mathcal{F}_{S}(G)^{\text {op }}} M(P)$,

$$
\begin{aligned}
i^{*} i_{*}(x) & =\sum_{g \in S \backslash G / S}\left(i_{S \cap g S g^{-1}}\right)_{*}\left(c_{g}\right)_{*} i_{S \cap g^{-1} S g}^{*}(x) \\
& =\sum_{g \in S \backslash G / S}\left(i_{S \cap g S g^{-1}}\right)_{*} i_{S \cap g S g^{-1}}^{*}(x) \\
& =\sum_{g \in S \backslash G / S}\left[S: S \cap g S g^{-1}\right] x=[G: S] x
\end{aligned}
$$

and for any $y \in M(G)$,

$$
i_{*} i^{*}(x)=[G: S] x
$$

Since $[G: S]$ is prime to p, the morphism induced by i^{*} is an isomorphism.

(1) The classical Cartan-Eilenberg formula

(2) The Cartan-Eilenberg formula for Mackey 2-functors

(3) p-monadic Mackey 2 -functors and 2 -sheaves

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor M is a contravariant 2-functor

$$
\mathrm{M}: \text { gpd }^{\mathrm{op}} \rightarrow \text { Add }
$$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor M is a contravariant 2-functor

$$
\mathbb{M}: \text { gpd }^{\circ p} \rightarrow \text { Add }
$$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:
(1) (Additivity) For any groupoids G and H, the canonical morphism

$$
M(G \sqcup H) \rightarrow M(G) \oplus M(H)
$$

is an equivalence.

Mackey 2-functors

Definition (Balmer-Dell'Ambrogio, 2020)

A Mackey 2-functor M is a contravariant 2-functor

$$
\mathrm{M}: \text { gpd }^{\mathrm{op}} \rightarrow \text { Add }
$$

from the 2-category of finite groupoids to the 2-category of additive categories, satisfying the following four axioms:
(1) (Additivity) For any groupoids G and H, the canonical morphism

$$
M(G \sqcup H) \rightarrow M(G) \oplus M(H)
$$

is an equivalence.
(2) (Adjoints) For any faithful morphism of groupoids $i: H \rightarrow G$, the image $i^{*}=\mathbb{M}(i)$ has a left adjoint $i_{!}$and a right adjoint i_{*}

$$
i_{!} \dashv i^{*} \dashv i_{*}
$$

Definition

(3) (Beck-Chevalley property) For any bipullback square of groupoids

$$
\begin{gathered}
\stackrel{u}{\sim} H \\
i \downarrow \sim \nVdash j \\
K \underset{v}{\sim} G
\end{gathered}
$$

the following pasting diagram define an isomorphism $v^{*} j_{*} \simeq i_{*} u^{*}$

$$
\begin{aligned}
& M(K) \stackrel{i_{*}}{\longleftarrow} M(L) \stackrel{u^{*}}{\longleftarrow} M(H) \\
& \text { M(K) } \\
& \overleftarrow{v^{*}} \\
& M(G)
\end{aligned}
$$

(and the corresponding left property)

Definition

(3) (Beck-Chevalley property) For any bipullback square of groupoids

$$
\begin{gathered}
\stackrel{u}{\sim} H \\
i \downarrow \sim \nVdash j \\
K \underset{v}{\sim} G
\end{gathered}
$$

the following pasting diagram define an isomorphism $v^{*} j_{*} \simeq i_{*} u^{*}$

$$
\begin{aligned}
& M(K) \stackrel{i_{*}}{\longleftarrow} M(L) \stackrel{u^{*}}{\longleftarrow} M(H) \\
& M(K) \underset{v^{*}}{ } M(G)
\end{aligned}
$$

(and the corresponding left property)
(9) (Ambidexterity) For any faithful morphism of groupoids $i: H \rightarrow G$,

$$
i!\simeq i^{*}
$$

Cohomological Mackey 2-functors

Definition (Balmer-Dell'Ambrogio 2021)

A (rectified) Mackey 2-functor M is cohomological if for any inclusion of groups (= connected groupoids) $i: H \rightarrow G$,

$$
\left|d_{M(G)} \stackrel{\eta}{\Rightarrow} i_{i} i^{*} \stackrel{\text { Id }}{\Rightarrow} i_{*}\right|^{*} \stackrel{\epsilon}{\Rightarrow} \operatorname{Id}_{M(G)}=[G: H] \operatorname{Id}_{\mathrm{Id}_{M(G)}} .
$$

Cohomological Mackey 2-functors

Definition (Balmer-Dell'Ambrogio 2021)

A (rectified) Mackey 2-functor M is cohomological if for any inclusion of groups (= connected groupoids) $i: H \rightarrow G$,

$$
\left|d_{M(G)} \stackrel{\eta}{\Rightarrow} i_{i} i^{*} \stackrel{\text { Id }}{\Rightarrow} i_{*}\right|^{*} \stackrel{\epsilon}{\Rightarrow} \operatorname{Id}_{M(G)}=[G: H] \operatorname{Id}_{\mathrm{Id}_{M(G)}} .
$$

Example

The following mappings define cohomological Mackey 2-functors \mathbb{M} :

- $M(G)=\bmod (\mathbb{k} G)$, the category of modules on G.
- $M(G)=\mathrm{D}(\mathbb{k} G)$, the derived category of modules on G.
- $M(G)=\operatorname{coMack}(G)$, the category of G-local cohomological Mackey functors.

p-Monadic Mackey 2-functors

Definition

A Mackey 2-functor is p-monadic if for any inclusion of groups $i: H \rightarrow G$ of index prime to p, the adjunction $i!~ \dashv i^{*}$ is monadic, that is, the canonical morphism

$$
M(G) \rightarrow \mathbb{M}(H)^{i^{*} i}
$$

to the category of Eilenberg-Moore of the monad $i^{*} i!$ is an equivalence.

p-Monadic Mackey 2-functors

Definition

A Mackey 2-functor is p-monadic if for any inclusion of groups $i: H \rightarrow G$ of index prime to p, the adjunction $i!\dagger i^{*}$ is monadic, that is, the canonical morphism

$$
M(G) \rightarrow M(H)^{i^{*} i}
$$

to the category of Eilenberg-Moore of the monad $i^{*} i_{!}$is an equivalence.

Proposition (Balmer-Dell'Ambrogio 2021)

Let M be a cohomological Mackey 2-functor taking values in $\mathbb{Z}_{(p)}$-linear and idempotent-complete categories. Then \mathbb{M} is p-monadic.

Cartan-Eilenberg formula for Mackey 2-functors

Theorem (M., 2021)
Let M be a p-monadic Mackey 2-functor. Then for any group G with p-Sylow S, there is a canonical equivalence

$$
M(G) \simeq \operatorname{bilim}_{P \in \mathcal{O}_{s}(G)^{\text {op }}} M(P)
$$

Cartan-Eilenberg formula for Mackey 2-functors

Theorem (M., 2021)
Let M be a p-monadic Mackey 2-functor. Then for any group G with p-Sylow S, there is a canonical equivalence

$$
M(G) \simeq \operatorname{bilim}_{P \in \mathcal{O}_{S}(G)^{\text {op }}} M(P)
$$

Proof.

- By p-monadicity, there is an equivalence $M(G) \simeq M(S)^{i^{*} i_{1}}$, where $i: S \rightarrow G$ is the canonical inclusion.

Cartan-Eilenberg formula for Mackey 2-functors

Theorem (M., 2021)
Let M be a p-monadic Mackey 2-functor. Then for any group G with p-Sylow S, there is a canonical equivalence

$$
M(G) \simeq \operatorname{bilim}_{P \in \mathcal{O}_{S}(G)^{\text {op }}} M(P)
$$

Proof.

- By p-monadicity, there is an equivalence $M(G) \simeq M(S)^{i^{*} i_{1}}$, where $i: S \rightarrow G$ is the canonical inclusion.
- By the Bénabou-Roubaud theorem, $M(S)^{i^{*} i_{*}}$ is equivalent to the bilimit of M over a descent diagram.

Cartan-Eilenberg formula for Mackey 2-functors

Theorem (M., 2021)
Let M be a p-monadic Mackey 2-functor. Then for any group G with p-Sylow S, there is a canonical equivalence

$$
M(G) \simeq \operatorname{bilim}_{P \in \mathcal{O}_{s}(G)^{\text {op }}} M(P)
$$

Proof.

- By p-monadicity, there is an equivalence $M(G) \simeq M(S)^{i^{*} i_{1}}$, where $i: S \rightarrow G$ is the canonical inclusion.
- By the Bénabou-Roubaud theorem, $M(S)^{i^{*} i_{*}}$ is equivalent to the bilimit of M over a descent diagram.
- By a 2-finality argument, the descent diagram can be replaced by the orbit category $\mathcal{O}_{S}(G)$ in the bilimit.

(1) The classical Cartan-Eilenberg formula

(2) The Cartan-Eilenberg formula for Mackey 2-functors
(3) p-monadic Mackey 2-functors and 2-sheaves

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.
Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.
Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2-functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.
Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2 -functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?
- Are all p-monadic Mackey 2 -functors cohomological ?

Beyond the Cartan-Eilenberg formula

By the Cartan-Eilenberg formula, we are able to the recover the value at any object of a p-monadic Mackey 2-functor from its restriction to p-groupoids.
Questions:

- Can we recover the whole 2-functor (i.e. also the image of morphisms and 2-morphisms) ?
- Does any Mackey 2 -functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?
- Are all p-monadic Mackey 2-functors cohomological ?

Answer: p-monadic Mackey 2-functors are 2-sheaves, they satisfy a gluing condition with respect to the inclusion maps of order prime to p.

2-Sheaves on finite groupoids

Proposition

The 2-category gpd of finite groupoids is endowed with a 2-topology of Grothendieck, the p-local topology:

- A covering morphism of a group G is a morphism $i: H \rightarrow G$ of index prime to p.
- These morphisms satisfy a stability property (slightly weaker than stability by bipullbacks)

2-Sheaves on finite groupoids

Proposition

The 2-category gpd of finite groupoids is endowed with a 2-topology of Grothendieck, the p-local topology:

- A covering morphism of a group G is a morphism $i: H \rightarrow G$ of index prime to p.
- These morphisms satisfy a stability property (slightly weaker than stability by bipullbacks)

Proposition

The restriction from the 2-category of 2-sheaves on finite groupoids with the p-local topology to the 2-category of 2-sheaves on finite p-groupoids (with the induced topology).

is a biequivalence.

Mackey 2-functors as 2-sheaves

Theorem
Let $\mathrm{M}: \mathbf{g p d}^{\mathrm{op}} \rightarrow$ Add be a 2 -functor whose restriction to p-groupoids is a Mackey 2-functor. Then the following statements are equivalent:

- M is a p-monadic Mackey 2-functor.
- M is a 2-sheaf for the p-local topology on the 2-category of groupoids.

Mackey 2-functors as 2-sheaves

Theorem
Let $\mathbb{M}:$ gpd $^{\circ \mathrm{p}} \rightarrow$ Add be a 2-functor whose restriction to p -groupoids is a Mackey 2-functor. Then the following statements are equivalent:

- M is a p-monadic Mackey 2-functor.
- M is a 2-sheaf for the p-local topology on the 2-category of groupoids.

Corollary

The restriction

$$
2 \operatorname{Mack}_{p}(\text { gpd }) \rightarrow 2 \operatorname{Mack}(p-g p d)
$$

of p-monadic Mackey 2-functor on groupoids to p-groupoids is a biequivalence of 2-categories.

Back to the questions

- Can we recover the whole p-monadic Mackey from its restriction to p-groupoids ?

Back to the questions

- Can we recover the whole p-monadic Mackey from its restriction to p-groupoids ?

Yes, by the biequivalence.

Back to the questions

- Can we recover the whole p-monadic Mackey from its restriction to p-groupoids ?

Yes, by the biequivalence.

- Does any Mackey 2-functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?

Back to the questions

- Can we recover the whole p-monadic Mackey from its restriction to p-groupoids ?

Yes, by the biequivalence.

- Does any Mackey 2-functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?

Yes, by the biequivalence.

Back to the questions

- Can we recover the whole p-monadic Mackey from its restriction to p-groupoids ?

Yes, by the biequivalence.

- Does any Mackey 2-functor on finite p-groupoids define a p-monadic Mackey 2-functor on all finite groupoids ?

Yes, by the biequivalence.

- Are all p-monadic Mackey 2-functors cohomological ?

No: any non-cohomological Mackey 2-functor on p-groupoids induce a p-monadic non-cohomological Mackey 2-functor.

Conclusion

- Notions and results from the theory of Mackey functors may be categorified to apply to Mackey 2-functors (in this presentation the notion of "cohomological" and the Cartan-Eilenberg formula).
- A p-monadic Mackey 2-functor is entirely determined by its restriction to p-groupoids.
- Looking at 2-sheaves over other classes of groups (for instance, profinite groups) may be interesting.

