## Mackey functors on saturated fusion systems

Marco Praderio (Lancaster University)

28 September 2021

Marco Praderio (Lancaster University) Mackey functors on saturated fusion syster 28 September 2021 1/24



2 Action of the Burnside ring

Marco Praderio (Lancaster University) Mackey functors on saturated fusion systerna 28 September 2021 2/24

3

# Mackey functors

э

## Mackey functor (Dress definition).

## Definition

A Mackey functor for a finite group G over a ring  $\mathcal{R}$  is a pair  $M = (M_*, M^*)$  satisfying the following 3 conditions:

- Functoriality:  $M_*$  ( $M^*$ ) is a (contravariant) functor from G-set to  $\mathcal{R}$ -mod and  $M_*(X) = M^*(X) = M(X)$  for every finite G-set X.
- Pull-back commutativity: For every pull-back diagram of finite G-sets

$$\begin{array}{ccc}
\Omega & \xrightarrow{\alpha} & Y \\
\gamma & & & \downarrow^{\beta} \\
X & \xrightarrow{\delta} & Z
\end{array}$$

we have  $M_{*}\left(\gamma
ight)M^{*}\left(lpha
ight)=M^{*}\left(\delta
ight)M_{*}\left(eta
ight).$ 

3 Additivity: Given finite G-sets X and Y then applying  $M_*$  to the natural inclusions  $X \to X \sqcup Y \leftarrow Y$  leads to an isomorphism  $M(X) \oplus M(Y) \cong M(X \sqcup Y)$ .

### Examples

- The Burnside Mackey functor that associates to each subgroup its corresponding burnside ring.
- The group cohomology (homology) Mackey functor that associates to every subgroup its *n*-th cohomology (homology) group over a fixed  $\mathbb{Z}G$ -module.
- The Mackey algebra.

## Problem

Since Fusion systems of the form  $\mathcal{F}_{S}(G)$  do not "see" elements of G but just the morphisms they induce by conjugation a problem arises when trying to extend the Mackey functors on groups to Mackey functors on fusion systems.

For instance given a Mackey functor M on a group G, a subgroup  $H \leq G$ and element  $x, y \in G$  such that x = yz for some  $z \in C_G(H)$  then we have that the G-set morphisms  $c_x, c_y : G/H \to G/^{\times}H$  are different and, therefore, we could have  $M_*(c_x), M_*(c_y) : M(G/H) \to M(G/^{\times}H)$  with  $M_*(c_x) \neq M_*(c_y)$ .

### Fact

The  $\mathbb{Z}$ -module formed by isomorphism classes of (H, K)-bisets spanned (via disjoint union) by bisets of the form  $[J, c_x]_H^K$  and with  $H, K \leq S$  ranging over all subgroups of S forms a ring with product given by composition of bisets (product of non composable bisets is 0).

### Definition

We call such ring the conjugation invariant Mackey algebra of G over  $\mathbb{Z}$  and denote it by  $\mu_{\mathbb{Z}}^{c}(G)$ . Given a commutative ring  $\mathcal{R}$  we also define

$$\mu_{\mathcal{R}}^{\mathsf{c}}(\mathsf{G}) := \mathcal{R} \otimes_{\mathbb{Z}} \mu_{\mathbb{Z}}^{\mathsf{c}}(\mathsf{G}).$$

A conjugation invariant Mackey functor for a group G over a ring  $\mathcal{R}$  is a left  $\mu_{\mathcal{R}}^{c}(G)$ -module.

### Remark

The category of conjugation invariant Mackey functors is embedded in the category of Mackey functors via the association  $\Psi: \mu_{\mathcal{R}}^{c}(G) \operatorname{-mod} \to \operatorname{Mack}_{\mathcal{R}}(G)$  satisfying

$$\Psi(M)(G/H) = [H, \mathrm{Id}]_{H}^{H} N,$$
  

$$\Psi(M)_{*}(\iota c_{x}) = [H, c_{x}]_{H}^{K} : M(S/H) \to M(S/K),$$
  

$$\Psi(M)^{*}(\iota c_{x}) = [^{x}H, c_{x-1}]_{K}^{H} : M(S/K) \to M(S/H)$$

for every  $H, K \leq S$  and  $x \in S$  with  $H \leq K^x$ .

Given a *p*-group *S* and a fusion system  $\mathcal{F}$  on *S* (not necessarily saturated) we define  $\mu_{\mathbb{Z}}(\mathcal{F})$  the **Mackey algebra of**  $\mathcal{F}$  on  $\mathbb{Z}$  as the ring (with composition) having as elements isomorphism classes of (H, K)-bisets spanned (via disjoint union) by bisets of the form  $[J, \varphi]_{H}^{K}$  with  $H, K \leq S$  ranging over all subgroups of *S*, with  $J \leq H$  and  $\varphi \in \operatorname{Hom}_{\mathcal{F}}(J, K)$ . As before we define for any commutative ring  $\mathcal{R}$  the Mackey algebra

$$oldsymbol{\mu}_{\mathcal{R}}\left(\mathcal{F}
ight):=\mathcal{R}\otimes_{\mathbb{Z}}\mu_{\mathbb{Z}}\left(\mathcal{F}
ight)$$

A Mackey functor for  $\mathcal{F}$  on  $\mathcal{R}$  is a left  $\mu_{\mathcal{R}}(\mathcal{F})$ -module.

### Remark

Notice that for every  $\mathcal{F} \subseteq \mathcal{G}$  we have that  $\mu_{\mathcal{R}}(\mathcal{F}) \subseteq \mu_{\mathcal{R}}(\mathcal{G})$ . Moreover we also have the identity  $\mu_{\mathcal{R}}^{c}(S) = \mu_{\mathcal{R}}(\mathcal{F})$  whenever  $\mathcal{F} = \mathcal{F}_{S}(S)$  (i.e. The conjugation invariant Mackey functors are exactly the Mackey functors over  $\mathcal{F}_{S}(S)$ ).

### Examples

- Any global Mackey functor (for example H<sup>n</sup>(-, k)) can be restricted to a Mackey functor over a fusion system *F*.
- Any conjugation invariant Mackey functor on S can be seen as a Mackey functor on  $\mathcal{F}_{S}(S)$ .
- The Burnside Mackey functor that sends every  $H \leq S$  to  $[H, \operatorname{Id}]_{H}^{H} \mu_{\mathcal{R}} (\mathcal{F}) [S, \operatorname{Id}]_{S}^{S}$ .

## Some properties of Mackey functors on fusion systems.

## Proposition

There is a 1-1 correspondence between pairs (H, V) with  $H \leq S$  (taken up to  $\mathcal{F}$ -isomorphism) and V a simple  $\mathcal{R}Out_{\mathcal{F}}(H)$ -module (taken up to isomorphism) and isomorphism classes of simple Mackey functors.

### Proposition

Given a fusion system  $\mathcal{F}$  over a p-group S and a field k such that p is invertible in k and  $|Out_{\mathcal{F}}(H)|$  is invertible in k for every  $H \leq S$  then  $\mu_k(\mathcal{F})$  is semisimple.

### Proposition

Given fusion systems  $\mathcal{F} \subseteq \mathcal{G}$  an induction and restriction between Mackey functors on  $\mathcal{F}$  and on  $\mathcal{G}$  can be defined via usual change of rings for modules. induction is always left adjoint to restriction. Moreover if we restrict to  $\mathcal{G}$ -centrics and impose  $\mathcal{F} = \mathcal{F}_S(S)$  then induction is also right adjoint.

# Action of the Burnside ring

э

Given a finite group S we define B(G) the **Burnside ring of** G as the Grothendieck group of the monoid having as elements isomorphism classes of finite *G*-sets. Addition here is given by disjoint union and multiplication by cartesian product.

In addition, given a commutative ring  ${\mathcal R}$  we define

 $B(G, \mathcal{R}) := \mathcal{R} \otimes_{\mathbb{Z}} B(G).$ 

#### Fact

The Burnside ring  $B(G, \mathcal{R})$  can be embedded in the center of  $\mu_{\mathcal{R}}^{c}(G)$  through the linear mapping

$$[G/H] \to \sum_{K \leq G} \sum_{x \in [K \setminus G/H]} [K \cap^x H, Id]_K^K$$

### Remark

Another way of describing that map is saying that a G-set  $\Omega$  acts on the conjugation invariant Mackey functor M by applying to every M(H) the biset

$$\Omega^{H} \circlearrowright = [H, \mathsf{Id}]_{S}^{H} \circ (\Omega \times \{e\}) \circ [\{e\}, \mathsf{Id}]_{H}^{\{e\}}.$$

Where  $e \in G$  denotes the identity element.

An S-set  $\Omega$  is called  $\mathcal{F}$ -stable if and only if exists an  $\mathcal{F}$ -stable (S, S)-biset  $\Psi$  such that  $\Omega = \Psi / \sim$  where  $\sim$  is the equivalence class that relates right S-orbits.

When  $\mathcal{F}$  is saturated Sune Reeh defines  $B(\mathcal{F})$  the **Burnside ring of**  $\mathcal{F}$  as the subring of  $B(S, \mathbb{Z}_p)$  formed by the isomorphism classes of  $\mathcal{F}$ -stable *S*-sets. Given  $\mathcal{R}$  a commutative ring in which p is invertible we define

$$\mathsf{B}\left(\mathcal{F},\mathcal{R}
ight):=\mathcal{R}\otimes_{\mathbb{Z}}B\left(\mathcal{F}
ight).$$

### Remark

There is in fact no need for p to be invertible in  $\mathcal{R}$  but if it wasn't then  $B(\mathcal{F}, \mathcal{R})$  wouldn't have a unit.

### Proposition

 $B(\mathcal{F},\mathcal{R})$  can be embedded in the center of  $\mu_{\mathcal{R}}(\mathcal{F})$ . In particular there is an action of  $B(\mathcal{F},\mathcal{R})$  on every Mackey functor

## Proof.

For every  $\Omega \in B(\mathcal{F}, \mathcal{R})$  and every Mackey functor M on  $\mathcal{F}$  we define the action of  $\Omega$  on M as the action of  $\Omega$  seen as an element of  $B(S, \mathcal{R})$  on M seen as a conjugation invariant Mackey functor. Since we already know that the action of  $\Omega$  commutes with the action of bisets of the form  $[H, \text{Id}]_{H}^{K}$  and  $[H, \text{Id}]_{K}^{H}$  and that this action leads to an injective ring morphism onto then we only need to prove that the action of  $\Omega$  commutes with the action of bisets of the form  $[H, \varphi]_{H}^{\varphi(H)}$ . In other words we need to prove that the identity

$$\Omega^{\varphi(H)} \circlearrowright \circ [H, \varphi]_{H}^{\varphi(H)} = [H, \varphi]_{H}^{\varphi(H)} \circ \Omega^{H} \circlearrowright.$$

## Proof.

Through simple computation we have that

$$\begin{aligned} [H,\varphi]_{H}^{\varphi(H)} \circ [H,\mathsf{Id}]_{S}^{\varphi(H)} &= [H,\varphi]_{S}^{\varphi(H)} \,, \\ [\{e\},\mathsf{Id}]_{\varphi(H)}^{\{e\}} \circ [H,\varphi]_{H}^{\varphi(H)} &= [\{e\},\mathsf{Id}]_{H}^{\{e\}} \,, \end{aligned}$$

and since  $\Omega$  is  $\mathcal{F} ext{-stable}$  then

$$[\varphi(H), \mathsf{Id}]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}) = [H, \varphi]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}),$$

## Proof.

Joining these results we have that

$$\begin{split} \Omega^{\varphi(H)} & \circlearrowright \circ [H,\varphi]_{H}^{\varphi(H)} = \left( [\varphi(H), \mathrm{Id}]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}) \circ [\{e\}, \mathrm{Id}]_{\varphi(H)}^{\{e\}} \right) \circ \\ & \circ [H,\varphi]_{H}^{\varphi(H)} , \\ &= [\varphi(H), \mathrm{Id}]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}) \circ [\{e\}, \mathrm{Id}]_{H}^{\{e\}} , \\ &= [H,\varphi]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}) \circ [\{e\}, \mathrm{Id}]_{H}^{\{e\}} , \\ &= [H,\varphi]_{H}^{\varphi(H)} \circ \left( [H, \mathrm{Id}]_{S}^{\varphi(H)} \circ (\Omega \times \{e\}) \circ [\{e\}, \mathrm{Id}]_{H}^{\{e\}} \right) \\ &= [H,\varphi]_{H}^{\varphi(H)} \circ \Omega^{H} \circlearrowright . \end{split}$$

3

21/24

#### Fact

A similar result can be obtained replacing Reeh's Burnside ring with the Burnside ring Proposed by Diaz and Libman. This analogous result however limits us to  $\mathcal{F}$ -centric subgroups of S and to centric Mackey functors (i.e. Mackey functors M such that  $[H, Id]_{H}^{H} M = 0$  whenever H is not  $\mathcal{F}$ -centric).

# Thank you for listening.



## Serge Bouc. Fused mackey functors. Geometriae Dedicata, 176, 03 2013.

Jacques Thevenaz and Peter Webb. The structure of mackey functors. *Transactions of the American Mathematical Society*, 347(6):1865–1961, 1995.



## Peter Webb.

Two classifications of simple mackey functors with applications to group cohomology and the decomposition of classifying spaces. *Journal of Pure and Applied Algebra*, 88(1):265–304, 1993.