A group-theoretical approach to interpenetrated networks

Igor Baburin

Technische Universität Dresden, Theoretische Chemie

Lancaster, "Bond-node structures", $5^{\text {th }}$ June 2018

Outline

- Symmetry properties of interpenetrating nets
- Generation of interpenetrating nets using group-supergroup relations: fundamentals
- Working examples to derive new interpenetration patterns
- Maximal isometry groups of interpenetrating networks
- Interpenetrated 2-periodic nets (layers), polycatenanes etc.

What is a net (network)?

- A net Γ is a graph that is connected, simple, locally finite
- A net Γ is called periodic if its automorphism group Aut (Γ) contains $Z^{n}(n \geq 1)$ as a subgroup (usually of finite index) $\rightarrow \boldsymbol{n}$-periodic nets (graphs); we will focus on $n=2,3$
- Aut(Γ) (all its 'symmetries') is considered (as usual) as a group of adjacency-preserving permutations on the vertex set of Γ
- In most cases of interest $\mathrm{Aut}(\Gamma)$ is isomorphic to a crystallographic group, and there exists an embedding of Γ in R^{3} where all automorphisms can be realized as isometries \rightarrow we mostly work with embeddings in R^{3}

Cf. Delgado-Friedrichs \& O’Keeffe, J. Solid State Chem., 2005, 178, 2480-2485

Interpenetration of 3-periodic nets

Common interpenetrating 3-periodic nets

Occurrence of nets in 3D interpenetrated coordination polymers

Properties of symmetry-related interpenetrating nets

- A symmetry group \boldsymbol{G} acts transitively on a set of nets $\left\{\Gamma_{i}\right\}$, $i=1, . . n ;$
- A group \boldsymbol{H} maps an arbitrarily chosen net Γ_{i} onto itself; the index $|\boldsymbol{G}: \boldsymbol{H}|=n$

Finite example:
Cube as two tetrahedra: $m \overline{3} m-\overline{4} 3 m$

- It is therefore convenient to use a group-subgroup pair $\underline{\boldsymbol{G}-\boldsymbol{H}}$ to characterize the symmetry of interpenetrating nets.

Baburin, Acta Cryst. Sect. A 2016, 72, 366-375;
Koch et al., Acta Cryst. Sect. A 2006, 62, 152-167

Properties of symmetry-related interpenetrating nets

Lemma. Let $\left\{\Gamma_{i}\right\}$ be a set of n nets $\Gamma_{i}(i=1,2 \ldots . n)$ which form an orbit with respect to a symmetry group \boldsymbol{G} of the whole set. The elements of G which map a net Γ_{i} onto itself form a group H. Then stabilizers of vertices and edges of Γ_{i} in H are isomorphic to those in the group \mathbf{G}.

Stabilizers are the same in a group and a subgroup:

Remark. The cosets of H in G do not contain any rotation or roto-inversion axes which intersect vertices and/or edges of the nets.

Generation of interpenetrating nets: the supergroup method

- Fix an embedding of a 3-periodic net Γ_{1} in R^{3}, let H be its symmetry group
- Replicate Γ_{1} by a supergroup G_{k} of H with index $n\left(g_{n} \in G_{k}\right)$: $G_{k} \cdot \Gamma_{1}=\left(H \cup g_{2} \cdot H \cup \cdots \cup g_{n} \cdot H\right) \cdot \Gamma_{1}=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{n}$
- Characterize interpenetrating nets which arise for different supergroups $G_{k}(k=1, . . m)$ with respect to isotopy classes and maximal (intrinsic) symmetry groups

How to determine supergroups? How to find H ?

Group-subgroup vs. group-supergroup relations

- Let $H<G, n=[G: H]$ is finite
- How to find all supergroups of H isomorphic to G ?
- Take a list of subgroups of G with index n. Filter out subgroups isomorphic to H.
- For each subgroup determine affine normalizers $N(H)$. Consider $M=N(H) \cap N(G)$.
- In each case the number of supergroups isomorphic to H is given by the index $[N(H): M]$ - it can be infinite!
- Generate the orbit of supergroups by applying the elements of $N(H)$.

Which groups H to take?

- H is a symmetry group of a net embedding
- $H \leq \operatorname{Aut}(n e t) ;$ Aut(net) $=$ the automorphism group of a net
- Aut(net) is usually isomorphic to a crystallographic group, and can be found using the method of Olaf Delgado
- H is a subgroup of Aut(net) with a finite index
- Restrict the number of vertex orbits: consider minimal groups with a specified number of vertex orbits
- H's are subgroups of Aut(net) with the desired number of vertex orbits
- Vertex-transitive nets: minimal vertex-transitive groups (vertex stabilizers are either trivial or have order 2 in R^{3})

Groups H's are fixed - what else?

- Complication: the symmetry group H usually does not fix the embedding of a net up to similarity (or even up to isotopy)
- A net can undergo deformations allowed by H :
subgroup-allowed deformations
- The shape of edges: straight lines or arbitrary curved segments?
- A solution for practice: keep the embedding in H as in the full automorphism group
- Edges are either straight-line segments or V-shaped, as allowed by edge stabilizers

Towards an algorithm

- Find H's up to conjugacy in Aut(net) - GAP (Cryst, Polycyclic)
- For each group H list all supergroups $G_{k}(k=1, . . m$) with index n (m can be infinite for fixed $n-$ so be careful) - GAP (Cryst, Carat)
- Take advantage of the restrictions: additional mirrors or other rotation or roto-inversion axes which intersect vertices or edges of the net(s) must not belong to the supergroups G_{k}
- Transform the coordinates of vertices and edges from a basis of a group to that of a supergroup (take care that stabilizers of vertices and edges should be the same in both H and G_{k})
- Classify into patterns (Hopf ring nets, TOPOS)

Example: the (10,3)-d net (utp) and its 2-fold intergrowths: only three possibilities

Space group: Pnna [=Aut(utp)]
Vertex Stabilizer: trivial
Admissible supergroups of index 2:
Ccce, Pcca, Pban
cf. International Tables for Crystallography, Volume A1

Minimal non-isomorphic klassengleiche supergroups

- Additional centring translations

- Decreased unit cell

Example: the utp net and its intergrowths

Pcca - Pncn (2b)

Example: the utp net and its intergrowths

~10 (isostructural) examples in CSD

Pcca

1 related structure in CSD

Example: the utp net and its intergrowths

Pnna

Pban - Pnan (2c)

1 related structure in CSD

Classifying and characterizing interpenetrating nets

- Now we can generate embeddings of interpenetrating nets
- Every embedding is characterized by a group-subgroup pair $G-H$ (and it is known by construction)
- How to recognize isotopy classes of interpenetrating nets?
- How to find a maximal isometry group for each isotopy class? $G-H \rightarrow G_{\max }-H_{\max }$

Catenation patterns (= isotopy classes)

- Two sets of interpenetrating nets are said to show the same catenation (or interpenetration) pattern (= belong to the same isotopy class) if they can be deformed into each other without edge crossings (more precisely, in this case knot theorists speak of ambient isotopy*)

- This may be difficult to check by 'inspection' \rightarrow look at local properties of catenation ("knotting"), i.e. how cycles (= rings) of nets are catenated. If cycles are catenated differently, then the patterns are distinct.

Hopf ring net (HRN): a tool to classify catenation patterns

- Vertices: barycenters of catenated rings
- Edges: stand for Hopf links between the rings

- Describes the catenation pattern if all links are of Hopf type:
if HRNs are not isomorphic, then the patterns are different

Fig. 2 from Alexandrov, Blatov, Proserpio, Acta Cryst. Sect. A 2012, 68, p. 485

Hopf ring net (HRN)

- The valencies of vertices describe the "density of catenation"
- Given isomorphism type of a network, does there exist an upper bound for the valencies of vertices in the respective HRN if the number of networks in the set is fixed? (In other words: are there any combinatorial restrictions on the "density of catenation"?)
- The answer is no

Infinite series of non-isotopic patterns

pcu in monoclinic symmetry: $P 2 / m, \mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0 ; a=b=c ; \beta=90^{\circ}$ (vertex-transitive, edge 3-transitive)

- Basis transformation: -n 0-1 / 010 / 100

$$
\beta=\operatorname{acos}\left(-n / \operatorname{sqrt}\left(n^{2}+1\right)\right)
$$

- Deform the net by setting $\beta=90^{\circ}$ again (a series of deformations)
- Apply supergroup operations (e.g. a 2-fold screw parallel to [100], i.e., original $[-\mathrm{n} 0-1]$ direction)

```
n=0 -> P 2 / /n 2/m 2/ /n - P2/m (pcu-c pattern)
n = 1 -> P 2 /lb 2/m 2/n - P2/m (more 'knotted' pattern)
n=2 -> Pnmn - P2/m
n = 3 -> Pbmn - P2/m, .........
```


Infinite series: local catenation

pcu-c

4 rings catenate the central

8 rings catenate the central
and so on...

12 rings catenate the central

More on Hopf ring nets (HRN)

- If HRN net is connected and Aut(HRN) is isomorphic to a crystallographic group, it is easy to show that the maximal symmetry $G_{\max }$ for a set Γ of interpenetrating nets $\Gamma_{i}(i=1, . . n)$ is a subgroup of Aut(HRN): $G_{\max } \leq \operatorname{Aut}(H R N)$

This holds for any patterns (i.e., transitive or not)

- For transitive patterns: the index $\left|G_{\max }: H_{\max }\right|=n$
- For transitive patterns: $G_{m a x}$ is determined based on subgroup relations between $\operatorname{Aut}(\operatorname{HRN})$ and $\operatorname{Aut}\left(\Gamma_{i}\right)$

On the maximal symmetry of a set of interpenetrating nets $G_{\max }-H_{\max }$

- In general: $G_{\max } \leq \operatorname{Aut}(\mathrm{HRN}) ; H_{\max } \leq \operatorname{Aut}\left(\Gamma_{i}\right)$
- Look for the intersection group(s) $K=\operatorname{Aut}\left(\Gamma_{i}\right) \cap \operatorname{Aut}(H R N)$
- If the index \mid Aut(HRN) : $K \mid=n$ (the number of connected components), then $G_{\max }$ is found: $G_{\max }=\operatorname{Aut}(\mathrm{HRN}) ; K=H_{\max }$
- If not, then suppose $H_{\text {max }}=\operatorname{Aut}\left(\Gamma_{i}\right)$. To find $G_{\text {max }}$, look for supergroups of Aut $\left(\Gamma_{i}\right)$ with index n which have a subgroup relation to Aut(HRN)
- If supergroup search for $\operatorname{Aut}\left(\Gamma_{i}\right)$ is not successful [or does not make sense if $\left.\operatorname{Aut}(\mathrm{HRN}) \leq \operatorname{Aut}\left(\Gamma_{i}\right)\right]$, it has to be performed for subgroups of $\operatorname{Aut}\left(\Gamma_{i}\right)$

Example: a pair of gismondine (gis) networks

$P 4_{2} / \mathrm{nnm}-14_{1} /$ amd

$\operatorname{Aut}($ gis $)=14_{1} /$ amd $; \operatorname{Aut}(\mathrm{HRN})=\operatorname{Pn} 3 m ; \operatorname{Aut}(\mathrm{HRN}) \cap \operatorname{Aut}($ gis $)=14_{1} /$ amd .
$\mid \operatorname{Aut}(H R N): \operatorname{Aut}($ gis $) \mid=6 \rightarrow G_{\max } \neq \operatorname{Aut}(H R N)$.
The only supergroup of Aut(gis) $=14_{1}$ /amd with index 2 is $P 4_{2} / n n m$ (that is in turn a subgroup of Aut(HRN) $=$ Pn $3 m$ with index 3$)$.

2-fold vertex-transitive dia nets

Assumptions:

(i) vertex stabilizer has order ≥ 2
(ii) vertices can be displaced from their ideal positions as allowed by stabilizers, V-shaped edges and lattice mismatch are allowed

There are 8 patterns +2 infinite series

Max. symmetry	Max. vertex stabilizer	Transitivity	HRN	TD10 for HRN
$P n \overline{3} m-F d \overline{3} m$	T_{d}	111	hxg	3359
$I 4_{1} 22-P 4_{1} 2_{1} 2$	C_{2}	111	N/A	N/A
$I \overline{4} 2 d-I 2_{1} 2_{1} 2_{1}$	C_{2}	122	6,8 -coor	3966
$I 4_{1} 22-P 4_{1} 22$	C_{2}	122	$6,10-$ coor	6090
$C c c a-C 2 / c^{*}$	C_{2}	122	$6,10-$ coor	6660
$P b a n-P n a n$	C_{2}	122	$6,10-$ coor	7755
$C 222-I 2_{1} 2_{2} 2_{1}$	C_{2}	122	$6,12-$ coor	5752
$I 4_{1} 22-I 2_{1} 2_{1} 2_{1}$	C_{2}	122	$8,12-$ coor	5679
$C c c m-P c n m$	C_{s}	133	$6,6,10-$-coor	5183
$C c m a-C 2 / m^{*}$	C_{s}	133	$6,6,10-$ coor	5752

* - first members of infinite series

2-fold dia nets with transitivity 111

Pn3m - Fd3m (-43m)

$14,22-P 4,2,2(. .2)$

2-fold dia with transitivity 122

Interpenetration of 2-periodic layers

What is special compared to 3-periodic nets?

- The reference embedding of a layer is more uncertain because we need a corrugated, wavy layer - its symmetry is described by a layer group (2-periodic isometry group in R^{3})
- All symmetry groups of corrugated vertex-transitive 2-periodic nets where all edges incident with the vertices retain equal lengths were listed in 1978 by Koch and Fischer ("sphere packings in layer groups")
- A practical way is to keep the vertices in their max. symmetry positions in the plane, and consider V -shaped edges running out of plane, as allowed by edge stabilizers

What is special compared to 3-periodic nets?

- Not all group-supergroup pairs yield entangled layers (one layer can just lie on top of another)
- This property is net-specific (unfortunately not group-specific!): if $G-H$ is a group-subgroup pair of the interpenetration pattern, then the symmetry elements from the coset(s) of H in G must penetrate the ring to generate a symmetry-related ring that is interlaced with it - this is especially relevant for ring-transitive embeddings of layers
- What are the symmetry conditions for (Hopf) links?

Symmetry conditions for (Hopf) links

Which symmetry operations can map two interlocked rings onto each other?

- inversion does not generate any link (apart from trivial)
- a mirror does not generate a link (apart from trivial) or induces crossings
- 2-fold axis generates a Hopf link if the axis intersects a ring (but none of its edges)
- translations, screw rotations, glide reflections can generate Hopf links if respective symmetry elements intersect a ring and their translation component is comparable to the (maximal) lateral dimension of a ring
- any rotation axis, -3 and -4 rotoinversion axes (-6 contains a mirror so it is forbidden) can generate either Hopf or multiple links (Solomon or more complicated)

Symmetry conditions for (Hopf) links

2-fold axis

glide plane

Vertex- and edge-transitive honeycomb layers

- 2-fold interpenetrated honeycomb layers in 2D MOFs etc.:
following the minimal transitivity principle*, what are the most symmetric patterns i.e., those with one kind of node and one kind of link (edge)?
- Never observed**... do they exist?

- If they do exist, why aren't they observed?

[^0]
Honeycomb layers: both vertex- and edge-transitive groups

- Vertex stabilizer must have order 3 to exchange the edges incident with a vertex (edges could be nonplanar arcs)
- Four groups (up to conjugacy) remain

Layer group	$p 6$	$p 321$	$p 31 m$	$p \overline{3}$
Edge stabilizer	$2 .$.	.2.	..m	$\overline{1}$
Supergroups of index 2 without additional mirrors	$p 622$	$p 622$	$p \overline{3} 1 m$	-

2-fold interpenetrated hcb-layers

$$
p 622-p 6
$$

Edges are nonplanar arcs
Multiple knot

Baburin (2017), available from chemrxiv.org

2-fold interpenetrated hcb-layers

p622-p321

Multiple knot

Baburin (2017), available from chemrxiv.org

2-fold "interpenetrated" hcb-layers

Trivial knot
$p-31 m-p 31 m$
individual layers are polar

Polycatenanes

532

432

Mirrors/inversions can only stabilize vertices (edges) in catenanes

Conclusions

- A universal recipe to derive interpenetrating nets is developed based on group-supergroup relations for crystallographic groups
- Towards rationalization of observed vs. possible patterns
- Deformation equivalence classes of connected components?
- Any relation to physical properties?

Thank you

[^0]: * M. O’Keeffe et al., Chem. Rev., 2014, 114, 1343
 ** Blatov, Proserpio et al., CrystEngComm 2017, 19, 1993

