

Our Dynamic Sun

12 January 2017

3.4

Science & Technology Facilities Council

SD0/AIA-4500 20120307_100008

University of St Andrews

Ineke De Moortel

Our Dynamic Sun A 21st Century View

12 January 2017

University of St Andrews

Ineke De Moortel

Our Dynamic Sun Creating mathematical models to understand our local star

12 January 2017

Ineke De Moortel

University of St Andrews

The Sun as a Star

The Sun is an ordinary, middle-aged star (about 4.5 billion years)

- ~ 26,000 light years from the galactic centre
- Only 'special' because it is so close.

٠

• The Sun is the only star we can see in detail.

Solar Interior

Solar Atmosphere

The "Coronal Heating Problem"

Observing The Sun's Atmosphere

Solar Atmosphere

Photosphere (T ~ 6,400 °C)

Chromosphere (T ~ 4,000 - 1 million °C)

> Corona (T > 1 million °C)

Regions with strong magnetic field = very bright emission

Solar Magnetic Field

- Power source in the core
- "Differential" Rotation
- "Dynamo" in interior generates magnetic field
- Field rises and emerges through photosphere
 - > sunspots etc

Magnetic Field

Granulation

• Bright spots appear on Sun's surface where hot gas is rising.

- Then the gas cools and sinks.
 - Convection

Picture of solar granulation

Granulation

Coronal Loops

Bright coronal loops outline magnetic field

The Solar Corona

The solar corona is full of coronal loops

The Dynamic Solar Corona

Magnetic Field on all scales

Hinode/SOT: Images taken in the blue wing of Fe I 6302 Å

• The Sun's surface is threaded by magnetic fields on all scales.

Where is the Maths?

- So what do solar physicists (applied mathematicians!) do?
 - Create mathematical models to study the Sun's physical processes.

- Why do we need models?
 - The Sun is not a controlled experiment so we need modelling.
 - Observations mostly tell us the outcome of the physical processes.
 - Try to explain the observations.
 - Try to predict some of the events (especially the ones that might affect the Earth).

Mathematical Interlude: Derivatives

• The time derivative tells us how 'P' (position) has changed in time.

MagnetoHydroDynamics (MHD)

- The MHD equations are a combination of Maxwell's equations for magnetic fields and the fluid equations.
- The dependent variables:
- ρ the mass density
- $\mathbf{v} = (\mathbf{v}_{x_1}, \mathbf{v}_{y_2}, \mathbf{v}_{z_2})$ the fluid velocity
- P the gas pressure
- $j = (j_x, j_y, j_z)$ the current density
- $B = (B_x, B_y, B_z)$ the magnetic field
- T the plasma temperature
- $E = (E_x, E_y, E_z)$ the electric field
- All the variables depend on time (t) and space (x,y,z)

Maxwell Statue on George Street, Edinburgh

The MHD Equations

The MHD Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \mathbf{j} \times \mathbf{B} - \nabla p + \mathbf{F}$$
Coupled Equations!
$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} \qquad \nabla \cdot \mathbf{B} = 0$$

Magnetic Fields

- MHD is different from the usual fluid dynamics because the magnetic field introduces several new effects:
- 1. it exerts a force, which is perpendicular to the magnetic field B and which may either move the plasma or guide plasma motions
- 2. it provides support and stability (many solar phenomena are observed for days or even months);
- 3. it is elastic and so can support waves (coronal seismology);

The Solar Group in St Andrews focuses on the behaviour of the magnetic field in the Sun's atmosphere (coronal heating).

Emerging Coronal Loops

- 3D numerical model of emerging magnetic field forming
 - sunspot pair

coronal loops

Modelling the large-scale magnetic field

3D numerical model of the long term, global evolution of the solar magnetic field.

The Dynamic Solar Corona

- The Sun's magnetic field is anchored in the interior
- The magnetic field is moved about by the convection
 - Coronal loops are continuously moving!

Modelling the small-scale magnetic field

3D numerical model of the currents generated by moving magnetic fields

Currents = heating!

Eruptions

- The Sun's magnetic field becomes very twisted and tangled
- Explosions in the solar atmosphere are caused by the build up of magnetic energy

> Solar Flares

Eruptions

Start of a Coronal Mass Ejection

Sometimes, large amounts of material are ejected from the Sun.

Coronal Mass Ejections (CME)

CME's happen all the time

White light image of the extended solar corona using a coronagraph onboard SOHO

• During solar maximum, the Sun produces about 3 big mass ejections per day

www.solarstormwatch.com

CME Modelling

2D Numerical model of the onset of a CME eruption

Earth-directed CME's

Solar Wind

• Apart from impulsive CME's, matter streams out from the Sun continuously: The Solar Wind

Earth's Magnetic Field

• The Solar corona doesn't just stop somewhere - we live inside the Sun's atmosphere.

The Earth's magnetic field provides a shield to protect us from most of the effects of the solar wind and solar storms...

Aurora

•

Some energetic particles can enter the Earth's atmosphere near the poles

The Aurora (or Northern Lights)

How can solar storms affect us?

The Sun has a variety of effects on technology on Earth.

- Communications: radio signals, satellites (mobile phones, GPS)
- Induce Electric Currents: e.g in pipelines, train tracks, power lines (Blackouts, pipeline corrosion, sparks!)

March 1989 (Montreal, Quebec): 6 million people without electricity for 12 hours.

June 1989: gas pipeline explosion demolished part of the Trans-Siberian Railway, engulfing two passenger trains and killing 500 people.

(Solar Maximum 1990)

Space Travel

- Astronauts are outside Earth's magnetic field
 - No longer shielded from solar wind and solar storms
 - Disorientation, nausea, vomiting, cancers, death.

Chest X-ray	0.06 REM
Natural background radiation on Earth	0.35 REM per year
Maximum lifetime dosage of radiation	400 REM
Solar Flares	100 - 1000 REM

- International Space Station has special thick-walled room to retreat to during solar storms
- Crew get 30 times more radiation than whole year on Earth (10REM).
- During a solar storm in 1990, Mir cosmonauts received a full year's dosage in a few days.

Space Travel

Major problem:

- Moon (10 days) \rightarrow good odds.
- Mars (180 days) → little chance of avoiding major solar event.
- Mars has no / very weak magnetosphere!

Forecasting \rightarrow days / a week. Trips would take months /years!

Thick-walls or lead shielding adds significant mass:

- (1) more expensive
- (2) more difficult to launch
- (3) ship goes slower!

So how could astronauts protect themselves?

The Sun Today!

Billion SD in Street and State

www.suntrek.org sdowww.lmsal.com/suntoday_v2/ sohowww.nascom.nasa.gov solarb.msfc.nasa.gov stereo.gsfc.nasa.gov www.solarmonitor.org sdo.gsfc.nasa.gov www.solarstormwatch.com www-solar.mcs.st-and.ac.uk