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Choosing sample sizes
Error control vs. Patient benefit

Two different criteria to choose CTs sample sizes n:

(1) controlling for error probabilities (traditional type I and II)
and (2) maximising of the expected number of successfully
treated patients in a patient population (N).

• Resulting sample sizes are similar only for “large” values of N

• Cheng et al (2003) using decision analysis showed that the
optimal sample size of a 2-armed RCT (optimal in terms of
patient benefit) is ∝

√
N.

• Thus, large N means >> 1-4 million patients which results in
trials of size 1000-2000 (typical Phase III trial size).

• The European Medicines Agency defines a rare disease as a
condition affecting < 5 in 10,000 people in the EU.



Choosing sample sizes: how much research?
Ultrarare: Rare within Rare

• The suboptimality gap (in terms of patient benefit) of the
error control (EC) sample size approach is larger as N → 0.

• If N ≈ 400000, n∗ ≈ 600 while for N ≈ 1000, n∗ ≈ 32!

• So within rare, the optimal research-practice balance is not
the same (Annular pancreas vs. Hutchinson-Gilford progeria)

• EC approach does not consider population size to determine n.

• For rare conditions we have to include N to “optimally” draw
the line between research and practice.

• The sample size with the highest possible expected patient
benefit given the information available results from a fully
sequential Bayesian optimal decision model. (Bandit models)



Choosing sample sizes through online learning
Bandit Models: idealism vs. pragmatism

• Bandit models find n∗ through online learning.

• The right level of experimentation (research) depends on:

* what the data suggest might be the underlying treatment
difference among the arms

* how many more patients stand to benefit from that difference

• However, it’s not all roses in the bandit world...

* Bandits’ solution is computationally expensive, is not easily
summarised and does not impose type I and II error rates.

* Patients’ allocations to treatments during the learning phase
are most of the time not randomised.

How to implement? → Bayesian response-adaptive randomisation
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Balancing goals through Adaptive randomisation
Myopic vs. Forward-looking rules

• Response-adaptive randomisation (RAR) rules adapt
allocation probabilities based on the outcome and allocation
information of previous patients to meet certain goal.

• Bayesian RAR aligns allocation probabilities with treatment
efficacy as information about it accumulates.

• Simulation results indicating the advantage of Bayesian BAR
over equal randomisation Eick and Berry (1995). CTs and
RAR: Giles et al (2003). I-SPY2, BATTLE,...

• These RAR offer the possibility of balancing dual (sometimes
conflicting) goals. Yet, they are based on past information
only (i.e. they are myopic procedures).

• Non-myopic rules offer further benefits Villar et al (2015).



Using both Posterior and Predictive probabilities
How much research/practice given what we know and might happen

n patients enrolled sequentially in groups of size b over J stages.
Villar et al (2015) defined group allocation probabilities as follows:

πk,j : the probability of allocating arm k at stage j , which is
common to all patients in block j , when using the Gittins index
(Gittins and Jones, 1979) and given data observed up to block j-1.
Example: b = 2

j=1,
G1(1, 1) = 0.8699
G0(1, 2) = 0.7005

j=2,
G1(1, 2) = 0.7005
G0(1, 2) = 0.7005

1
2

Y1,0 = 0

j=2,
G1(2, 1) = 0.9102
G0(1, 2) = 0.7005

1
2

Y1,0
= 1

π1,0 =
(0 × 1) + (0 × 1/2 + 1/2 × 1/2)

2
= 1/8 , π1,1 =

(1 × 1) + (1 × 1/2 + 1/2 × 1/2)

2
= 7/8.
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The Forward Looking Gittins Index
Example: Redesigning a real trial

NeoSphere is a 4-arm FR trial in breast cancer with 417 patients.
The response rates reported in group A, B, C and D respectively
were 29.0%, 45.8%, 16.8% and 24.0%.

H1 : p1 = [0.29 0.458 0.168 0.24]
(1− β) p∗ (s.e.) ENS (s.e.)

FR 0.653 0.250 (0.02) 120.88 (9.34)
Trippa et al 0.895 0.451 (0.04) 150.98 (10.3)

C FLGI (block=9) 0.816 0.665 (0.06) 166.40 (11.9)
Thompson Sampling 0.782 0.585 (0.10) 155.93 (13.4)
FLGI (block=9) 0.177 0.804 (0.09) 174.11 (13.3)

GI 0.140 0.840 (0.10) 177.97 (13.0)

UB 1 190.99 (0.00)

with the πk,j probabilities computed via Montecarlo simulation.
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Using both Posterior and Predictive probabilities

• For common conditions the paradigm based on constraining
on error probabilities determines sample sizes which provide
substantial overall patient benefit.

• For rare conditions, patient population is the constraint and
unless we introduce it in the design this cannot provide
sufficient overall patient benefit.

• Forward looking response-adaptive randomisation provide a
practical way of implementing this. Another example of
implementable rules: poster by Williamson et al (2015).

• Further improvements when we add the ‘B’ for Bayesian to
the response-adaptive rule by using historical data
appropriately in poster by Bennett et al (2015).
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Questions & Comments
Useful vs. Indisputable

Thanks for the attention! ,
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