Machine Learning in Simulation

Thomas Newman
Supervisor: Graham Laidler

September 2, 2020
Stochastic simulation:

Is a method for analysing the performance of systems whose behaviour depends on the interaction of random processes, processes that can be fully characterised by probability models.
Reasons to use stochastic simulations:

1. Feasibility: Will a project "work"?

2. Sensitivity: How important are the things we do not know?

3. Optimisation: What are the good options and how good are they?
Simulation analytics:

Simulation analytics refers to the methodology of applying machine learning or data analytics to the data generated by a stochastic simulation in order to understand more about how it behaves.
Reasons to use simulations analytics:

1. Understand the relationships of inputs and system state to outputs.

2. Full characterization of the observed output behaviour, marginally at a point in time, and dynamically across time.

3. Understanding about how and why alternative system designs differ, and how they will behave if implemented.

4. To generate inverse conditional statements: relationships of outputs to inputs or the system state.
Basics of Simulation Analytics

Understanding How a System Behaves

- **A**
- **B**
- **C**
- **D**

Longest Path

<table>
<thead>
<tr>
<th>Time</th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
<th>Task4</th>
<th>Task5</th>
<th>Longest Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19.32</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19.32</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19.32</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>19.32</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>19.32</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>19.32</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>19.32</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21.07</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>21.07</td>
</tr>
</tbody>
</table>

References

- Thomas Newman
- Machine Learning in Simulation
Basics of Simulation Analytics
Understanding How a System Behaves
What's Next
References

A B C D E F G H
T1 T4 T5 T7 T8
T2 T3 T6 T9
T10 T11

Time	Task1	Task2	Task3	...	Task11	Longest Path
8 | 2 | 2 | 1 | ... | 0 | 60.14
55 | 2 | 2 | 2 | ... | 1 | 59.32
13 | 2 | 2 | 2 | ... | 0 | 57.84
3 | 1 | 1 | 0 | ... | 0 | 61.55
... | ... | ... | ... | ... | ... | ...

Thomas Newman
Machine Learning in Simulation
1. Split data into blocks.

3. Plot task coefficients, correct classification rate and Kappa.
1. Creating overlap between consecutive blocks.

2. Changing the probability distributions of task durations to something more realistic.
Basics of Simulation Analytics
Understanding How a System Behaves
What's Next
References

Thomas Newman
Machine Learning in Simulation
Basics of Simulation Analytics
Understanding How a System Behaves
What's Next
References

Thomas Newman
Machine Learning in Simulation
What’s Next?

1. Look at change points detection: univariate and multivariate.

2. Outliers detection and effect of removal on increase robustness.

3. Look at the effect of changing the probability threshold of the logistic regression on the correct classification rate.

Thank you for listening!