
TESTING HYPER-HEURISTICS: SUDOKU APPLICATIONS

Hugh Simmons
Supervised by Matthew Davison and Rebecca Hamm

Lancaster University Intern

TESTING HYPER-HEURISTICS: SUDOKU APPLICATIONS

Hugh Simmons
Supervised by Matthew Davison and Rebecca Hamm

Lancaster University Intern

An Introduction to the Sudoku Problem

• The aim of the project is to code a programme that will find a valid
solution to an empty Sudoku of order n as quickly as possible.

• "Sudoku" is an abbreviation of the Japanese phrase "Suuji wa
dokushin ni kogiru", meaning "the numbers must remain single".
Contrary to the Japanese name, the 1st modern Sudoku was pub-
lished in the US in 1979 by Howard Garns; a retired architect and
puzzlemaker.

Fig. 1: An example of a standard Sudoku

• The standard Sudoku puzzle is a 9 by 9 grid of cells, each to be
filled with a number from 1 to 9. This grid can be further split into 9
boxes of 3 cells by 3 cells and, importantly, each number must only
appear once in a given column, row or box.

• In the literature, this is referred to as an order 3 Sudoku. An order n

Sudoku consists of a grid of n2 by n2 cells, into which the numbers
1 to n must be placed, with the same constraints as before.

The Backtracking Algorithm

• The backtracking algorithm is a systematic method for solving
standard Sudoku puzzles, we modified it to solve order n puzzles
before applying it to empty grids and recording its run time.

• The algorithm works by stepping through the grid one cell at a
time and discarding the combinations that aren’t valid until it even-
tually finds a solution.

• An important quality of the backtracking algorithm is that given
enough time it will find a solution, this is not the case for the heuristic
method due to its random nature.

• However, though this method works very well for low values of n, it
scales poorly for higher n. So there is demand for a method with
more desirable scaling such as a heuristic method.

Hyper-Heurisitcs

• A Hyper-Heuristic is a heuristic search method that seeks to automate the
selection of heuristics to solve a search problem as efficiently as possible.

• This is done by defining a cost function that tells us how close to a valid
solution a certain grid is and then reducing it through random swaps within
rows, columns or boxes.

• In our case the random swaps within rows, columns, boxes and the whole
Sudoku are our heuristics.

• For every iteration of the heuristic algorithm, 2 decisions must be made:

i Which heuristic to use to generate the next potential solution.
ii Whether to accept this new solution.

• The acceptance method used for the above solutions was Simulated Anneal-
ing, where the probability of acceptance is given as follows [2]:

p =

{
1, if ProposedCost < CurrentCost

eδ/t, if ProposedCost ≥ CurrentCost

}
, δ = CurrentCost− ProposedCost (1)

• The temperature parameter, t, was stepped down and up at certain iteration
numbers; tuned by the order 4 case. This makes it less and more likely,
respectively, that a worse solution is accepted.

• Heuristics were selected randomly, which didn’t perform significantly worse
than biasing towards the heuristics which worked best.

Comparison

Fig. 3: An example of an order 4 Sudoku

• Both algorithms were run for a range of order Sudoku and we can see that,
as hoped, the heuristic algorithm looks to scale better than the backtracking
algorithm.

• Furthermore, if the plotted fits are extrapolated to order 5 then the heuristic is
predicted to outperform the backtracking by a multiple of over 2000.

References

[1] Broderick Crawford et al. “Using Constraint Programming to solve Sudoku Puzzles”. In: 2008
Third International Conference on Convergence and Hybrid Information Technology. Vol. 2. 2008,
pp. 926–931. DOI: 10.1109/ICCIT.2008.154.

[2] Rhydian Lewis. “Metaheuristics can solve Sudoku puzzles”. In: J. Heuristics 13 (July 2007),
pp. 387–401. DOI: 10.1007/s10732-007-9012-8.


