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1. Introduction
Intermittent demand is a classification of sales data characterised by having several, sporadic, and high variance periods of demand. This, opposed to
sales data with more periodic trends (e.g seasonal) or data with smoother sales patterns, makes the demand of products with intermittent sales difficult
to accurately forecast using traditional methods. Examples of such products are; machinery, spare parts and jewellery to name a few. The necessity for
the accurate forecasting of these products appertains to the expensive nature of holding stock for prolonged periods and the risk of their obsolescence
"exacerbated by the greatly reduced product life cycles in modern industry" [1]. In conjunction with examples like the US military having up to a 60%
excess of spare parts in its inventory [2], there is a clear need for methods to help combat these issues.

2. Distributing the data
With the aim to estimate optimum stock levels,
we must find distributions that best describe in-
termittent data. Whilst somewhat limiting, the
Poisson distribution is a natural choice that for
slower moving items in particular, can capture
the right skewed nature of the frequency of de-
mand sizes [3]. Further, more flexible models
include;

• Negative Binomial Distribution

• Stuttering Poisson

The flexibility of said models arises because un-
like Poisson normally, the variance and mean
need not be the same and the sporadic nature
of these models can lead to high variance low
mean outcomes.

3. Simple Exponential Smoothing
To accurately model our data we must forecast
the parameters required in the distributions as
they vary over time. We choose to focus on the
Poisson Distribution hence look to estimate the
mean. A fairly primitive method is simple expo-
nential smoothing(SES) given by the formula;

d̂t+1 = d̂t + a(dt − d̂t),

Where the d̂ variables are the forecasted de-
mands and dt is the true demand in the previous
time period [1]. ”a” serves as an error constant
between 0 and 1 controlling how much our fu-
ture predictions are impacted by the error in the
previous forecasts (dt −d̂t). Below is an example
of SES forecasts for varying alpha values;

4. Croston’s Method
Croston’s Method [4] is an improvement upon SES primarily tackling the extremity of the upward
bias SES displays. The method forecasts both the mean interval between non-zero demand periods
as well as the mean size of non-zero demands in a period. The formula for this method being ;

R̂t+1 = R̂t + a(Rt − R̂t), Ît+1 = Ît + a(It − Ît) D̂t+1 = R̂t+1

Ît+1

Where the R terms represent the mean demand size and the I terms the mean interval. However
whilst Croston’s method has less bias than SES it still has an upwards bias over time meaning that as
products become obsolete neither of these method capture the right trend. The smoothing constant
alpha can be optimised per data set by minimising error measures like the mean squared error [1].
Below you can see the same alpha values as used in SES however we optimised the alpha value by
minimising the mean squared error to get alpha = 0.25 as our ideal value.

5. Temporal Aggregation
Whilst we see the application of these methods to data
with clear intermittent patterns, by manipulating the
data we have through temporal aggregation, we can
make data seem less or more intermittent. Take for
example bread being sold in a store, as a staple item
we would expect consistently high sales when looked at
across a day, however changing the time bucket (time
period) to hours, the data may seem intermittent.
More usefully however, we can group time periods to-
gether to reduce the amount of 0 demand periods in
our data in the hopes that our forecasting methods im-

prove.
The time bucket we choose is very reliant upon how long it takes for the product to be produced
and what stocking strategy you use. In a market where spare parts may be niche and significant in
processes that cannot happen without them, temporal aggregation may lead to over estimation of
how much is really needed. We may also see the benefit of service being out weighed by the cost of
storing such items for much longer periods. So a balance must be struck between the two.
The graph shows the difference in the mean of the data as the time bucket is changed. We see that
at first we have consistent growth in the mean of our sample however as this continues, the time
bucket changes become less significant and we are losing the amount of data we can input into our
methods for longer time buckets.

6. Further Research
1. Exploring the forecasting of variance and

looking further into the benefits of the
compound Poisson distributions.

2. More emphasise into looking at how we
can combat the upward bias of these mod-
els to help forecast products becoming ob-
solete.

3. Make a more specialised model that breaks
products down into sections of their life
cycle and gives a more specialised model.
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