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1. Motivation

Time series analysis allows one to study phenomena that evolve with time. The aim of the project was to apply Dynamic Linear Models (DLMs) to time series,
that do not show a particular trend or seasonal variation. In particular, the local level model was used to generate observed data and the Kalman filter was used to
perform inference on the unknown state vector and forecast. The performance of the Kalman filter was tested on multiple observation sequences and in the case
of missing data in the sequences.

2. Dynamic Linear Models (DLMs)

DLMs belong to a general class of time series models. They are described by
the observation equation (1) and the state equation (2) specified as follows,

Yt = Ftθt + vt, vt ∼ N (0,Vt), (1)

θt = Gtθt−1 + wt,wt ∼ N (0,Wt). (2)

• Yt ... the observed time series.
• θt ... the unobserved state vector.
• vt, wt ... the independent noise sequences drawn from normal distribution

with mean 0 and covariance matrices Vt and Wt.
• Ft, Gt ... the known matrices chosen according to the desired model.

Assumption: θ0 is normally distributed with mean m0 and variance C0.

Local Level Model

For a univariate model,

Ft = Gt = 1.

For a multivariate model,

Ft = Gt =

[
1 0
0 1

]
.

3. Kalman Filter

• In a filtering problem, the data arrives sequentially in time.
• The aim is to estimate the current state vector and forecast of the next

observation based on the previous observations and estimates of the state
vector. This process is known as filtering.

• The Kalman filter updates the estimates as new observation becomes
available.

4. Generating Multiple Observation Sequences

Figure 1: Graph showing 50 filtered state vector sequences together with the true state vector
sequence.

When applying a DLM to simulated data, the true state vector is not always
captured by the filtered estimates. For that reason, a sequence of state
vectors was generated by a random walk, and 50 corresponding observation
sequences were generated according to the univariate local level model.

Figure 2: Graph showing the fraction of the generated state vector sequence laying within the
range of the filtered state vector sequences, against the number of observation data sequences.

The Kalman filter was applied to these repetitions.
At each time step the range of the filtered values was computed, in order to
determine the fraction of the true state vector sequence laying within the range
of the filtered state vector sequences. It can be noticed empirically that a large
number of repetitions increases the chance of the true state vector sequence
lying within the range of filtering estimates, Figure 2.

5. Missing Data

? What happens if the observation sequence contains missing data?

Univariate method: The last state vector and forecast estimates are simply
carried forward.

• Randomly and periodically missing data - works well.
• Range of missing data - the state vector and forecast estimates will not

change for the duration of the whole range.

? Can we do better? A Yes!

Multivariate method: Two or more correlated observation data sequences,
where one or more, but not all of the data sequences have data missing;
use the data from the non-missing sequence to estimate the state vector
and forecast.
• This has been done for a bivariate VAR model and showed significant

improvements to the univariate case, Smith et al. (2022).
• However, it was found not to be the case for the multivariate local level

model, Figure 3.

Figure 3: Graph showing the generated data using the multivariate local level model and the
estimated forecasts for range of missing data using both univariate and multivariate methods.

6. Conclusions and Further Work

At around 250 sequences, the true state vector is captured within the range of filtered estimates for a
significant fraction of time, after which increasing the number of repetitions does not have significant effect
on the fraction of true state vector captured within the range of filtered estimates.

The multivariate method of dealing with missing data tends to perform better than the univariate.
However, when applied to the multivariate local level model, the resulting state vector and forecast
estimates were non-changing throughout the range of missing data. This is due to Gt being diagonal.

Further work could be done on a multivariate method for missing data for the case of diagonal Gt matrix.
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