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1. Motivation

@ In many areas, like seismology and hydrology, we are interested in modelling and performing inferences for rare events. A framework to better study these rare extreme events is required.

@ A common approach to model extreme data is to select a threshold and study data beyond that threshold. The quality of the model fit by this approach, however, relies heavily on the selection of threshold.
@ Another approach is to use a mixture model to model both the extreme and non-extreme events. Such mixture models, like threshold based methods, shed light on the threshold and provide a way to perform inferences about extreme events as well.
@ We are interested to investigate whether incorporating non-extreme data in the model provides better inferences.

V.

2. Peaks-Over-Threshold (POT) 3. Method of Murphy et al.

Exceedances of an appropriate threshold follow a GPD. We can compare a set of proposed thresholds, taking into account

@ For independent samples X; ~ F for i =1,2,--- ,n, if we denote any X; by X, we have the conditional excess : _ : _ _
distribution function F, for a threshold u, defined by F,(y) := P(X < u+y |X > u) for y > 0. the bias-variance trade-off, using the following algorithm.
@ F, describes the behaviour of exceedance data after a threshold. For an appropriate threshold, F, can be modelled by Input: data, proposal thresholds, # of bootstraps = k, # of quantile levels = m.

a generalised Pareto distribution (GPD).

@ The quality of GPD model strongly depends on the threshold, yet it is hard to select a good one. For each of the proposal thresholds:

GPD has density function 1. Estimate the GPD parameters using MLE.

) e\ 1E 2. Measure average distance at m equally spaced quantile levels between estimated GPD and data exceedance.
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geo(x) =<7 o 3. Bootstrap the exceedances over the proposed threshold and repeat Step 2 for k times.
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s € for £ =0, 4. Compute mean of the k average distances.
where x > 0. : :
Output: proposal threshold with least mean average distance.
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@ The Dynamically WGighted Mixture (DWM) model is a combination of a Weibull distribution for the non-extreme @ [he Hybrid Pareto Distribution (HPD) is a model that uses a Gaussian distribution to model non-extreme
and a GPD for the extreme observations. observations and a GPD to model extreme observations.
@ The mixing occurs by using a continuous Cauchy weight function (could be stepwise too). @ The two distributions are stitched at a junction point, with two constraints imposed to enforce continuity of this junction.
@ The weight will tend more towards the GPD for large values, and more towards the Weibull for small values. e For junction point u, we need f(u) = g(0) and f'(u) = g’(0).
@ Although we use a Weibull for bulk here, we can use any other light-tailed distribution (say Gaussian) to model @ The mixture is discrete and the junction serves as a threshold.
non-extreme observations.
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6. Simulation Study

Setup: Findings:
@ Models: (1) Method of Murphy et al. (M) (2) HPD (H) (3) DWM (D) @ Overall, M does very well at estimating return levels and has low RMSE.
@ Sample Distributions: (1) GPD scale = 1, shape = 0.5, location = 1 (2) Standard Normal (3) Beta(2,5) @ H does a decent job at estimating return levels and has relatively low RMSE. Also, though not shown here, H is the
@ Sample Size = 1000, Repetition = 100. most computationally efficient method among the three.
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