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1. Motivation
In many areas, like seismology and hydrology, we are interested in modelling and performing inferences for rare events. A framework to better study these rare extreme events is required.

A common approach to model extreme data is to select a threshold and study data beyond that threshold. The quality of the model fit by this approach, however, relies heavily on the selection of threshold.

Another approach is to use a mixture model to model both the extreme and non-extreme events. Such mixture models, like threshold based methods, shed light on the threshold and provide a way to perform inferences about extreme events as well.

We are interested to investigate whether incorporating non-extreme data in the model provides better inferences.

2. Peaks-Over-Threshold (POT)

For independent samples Xi ∼ F for i = 1, 2, · · · , n, if we denote any Xi by X , we have the conditional excess
distribution function Fu for a threshold u, defined by Fu(y) := P(X ≤ u + y |X ≥ u) for y > 0.

Fu describes the behaviour of exceedance data after a threshold. For an appropriate threshold, Fu can be modelled by
a generalised Pareto distribution (GPD).

The quality of GPD model strongly depends on the threshold, yet it is hard to select a good one.

GPD has density function
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GPD Density Functions with Different Shape Parameters

4. Dynamically Weighted Mixture (DWM)

The Dynamically Weighted Mixture (DWM) model is a combination of a Weibull distribution for the non-extreme
and a GPD for the extreme observations.

The mixing occurs by using a continuous Cauchy weight function (could be stepwise too).

The weight will tend more towards the GPD for large values, and more towards the Weibull for small values.

Although we use a Weibull for bulk here, we can use any other light-tailed distribution (say Gaussian) to model
non-extreme observations.

DWM has density function
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Dynamically Weighted Mixture Model Density

3. Method of Murphy et al.

Exceedances of an appropriate threshold follow a GPD. We can compare a set of proposed thresholds, taking into account
the bias-variance trade-off, using the following algorithm.

Input: data, proposal thresholds, # of bootstraps = k, # of quantile levels = m.

For each of the proposal thresholds:

1. Estimate the GPD parameters using MLE.

2. Measure average distance at m equally spaced quantile levels between estimated GPD and data exceedance.

3. Bootstrap the exceedances over the proposed threshold and repeat Step 2 for k times.

4. Compute mean of the k average distances.

Output: proposal threshold with least mean average distance.

(a) Method of Murphy et al. with GPD Samples (b) Mean Distance Plot with Minimum in Red

5. Hybrid Pareto Distribution (HPD)

The Hybrid Pareto Distribution (HPD) is a model that uses a Gaussian distribution to model non-extreme
observations and a GPD to model extreme observations.

The two distributions are stitched at a junction point, with two constraints imposed to enforce continuity of this junction.

For junction point u, we need f (u) = g(0) and f ′(u) = g ′(0).

The mixture is discrete and the junction serves as a threshold.

HPD has the density function

h(y) =
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Hybrid Pareto Distribution with µ = 0, σ = 1, ξ = 0.4

6. Simulation Study

Setup: Findings:
Models: (1) Method of Murphy et al. (M) (2) HPD (H) (3) DWM (D) Overall, M does very well at estimating return levels and has low RMSE.
Sample Distributions: (1) GPD scale = 1, shape = 0.5, location = 1 (2) Standard Normal (3) Beta(2,5) H does a decent job at estimating return levels and has relatively low RMSE. Also, though not shown here, H is the
Sample Size = 1000, Repetition = 100. most computationally efficient method among the three.

(a) Estimated Return Levels - GPD (b) Estimated Return Levels - Normal (c) Estimated Return Levels - Beta

(d) Root Mean Squared Error - GPD (e) Root Mean Squared Error - Normal (f) Root Mean Squared Error - Beta
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