Linear contextual bandits with global constraints

Shipra Agrawal
Industrial Engineering and Operations Research
Columbia University

Based on joint work with Nikhil R. Devanur.

Application: Revenue management in internet advertising

- Operating delivery of ads so that long term revenue from the business is maximized
- Multi-billion dollar annual revenues

Pay-per click advertising

Advertisers specify target user profiles, payment per click

- user opens a page at time t, matches target profile of many ads
- pick one ad
- "if the user clicks" on the shown ad, publisher gets paid Uncertainty in future user profiles, uncertainty in clicks
"Click-through rate" depends on a combination of user profile and ad features.

Linear regression model

Click-through rates as a linear function of user and ad features.

- Let $x_{t, a}$ be a vector of features of (user t, ad a) combination
- On serving ad a to the user t, the chances of getting clicked is $w^{T} x_{t, a}$ for some unknown vector w.
Linear contextual bandit problem: explore-exploit in the feature space to learn w quickly.

Linear contextual bandits

In every round t, pick one of the many options (arms) in set A_{t}.

- For every $a \in A_{t}$, observe "context vector" $x_{t, a} \in \mathbb{R}^{d}$ before making the choice.
- On picking option a, observe reward $r_{t} \in[0,1]$

Stochastic assumptions

- Reward r_{t} on picking arm a is i.i.d. from distribution with mean $w^{\top} x_{t, a}, w$ is unknown.
- No assumptions on the set A_{t} or context vectors - could be adversarial

Linear contextual bandits

Goal

- maximize sum of rewards $\sum_{t} r_{t}$
- minimize expected regret: compared to best context-dependent policy

$$
\mathcal{R}(T)=\sum_{t} \max _{a \in A_{t}} w^{T} x_{t, a}-\mathbb{E}\left[\sum_{t} r_{t}\right]
$$

UCB algorithms

- maintain a confidence ellipsoid around least-square estimate of w, use the most optimistic value \tilde{w}_{t} in the ellipsoid at time t
- at step t, play $\arg \max _{a \in A_{t}} \tilde{w}_{t}^{T} x_{t, a}$.
- achieve $\tilde{O}(d \sqrt{T})$ regret

Further considerations

Budget constraints!

Maximize the total value while not exceeding the budgets

$$
\begin{array}{rc}
\operatorname{maximize} & \sum_{t, a \in A_{t}} r_{t, a} y_{t, a} \\
\forall t, & \sum_{a \in A_{t}} y_{t, a} \leq 1 \\
\forall \text { ads } a, & \sum_{t: a \in A_{t}} r_{t, a} y_{t, a} \leq B_{a}
\end{array}
$$

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{T} x_{t, a t}$

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{\top} x_{t, a t}$
- Optimal choice: at every time step choose

$$
a_{t}=\arg \max _{a \in A_{t}} w^{\top} x_{t, a}
$$

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{T} x_{t, a_{t}}$
- Optimal choice: at every time step choose

$$
a_{t}=\arg \max _{a \in A_{t}} w^{\top} x_{t, a}
$$

- uncertainty in context set A_{t} did not matter, if you knew the regression parameter w

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{T} x_{t, a_{t}}$
- Optimal choice: at every time step choose

$$
a_{t}=\arg \max _{a \in A_{t}} w^{T} x_{t, a}
$$

- uncertainty in context set A_{t} did not matter, if you knew the regression parameter w

Now:

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{\top} x_{t, a t}$
- Optimal choice: at every time step choose

$$
a_{t}=\arg \max _{a \in A_{t}} w^{T} x_{t, a}
$$

- uncertainty in context set A_{t} did not matter, if you knew the regression parameter w
Now:
- Even if you know w, the choice at every step is not obvious

Benchmark: Optimal context dependent policy?

Earlier:

- Maximize $\sum_{t} w^{T} x_{t, a_{t}}$
- Optimal choice: at every time step choose

$$
a_{t}=\arg \max _{a \in A_{t}} w^{\top} x_{t, a}
$$

- uncertainty in context set A_{t} did not matter, if you knew the regression parameter w
Now:
- Even if you know w, the choice at every step is not obvious
- Ad a or a^{\prime} ?
- Ad a has highest immediate revenue, but it appears in A_{t} very frequently
- Ad a^{\prime} has smaller immediate revenue, but there may not be another opportunity to use its budget.

Stochastic assumption and Benchmark

Stochastic assumption on A_{t} :

- Set A_{t} of context vectors is generated i.i.d. from some distribution \mathcal{D} over collection of sets of context vectors

Benchmark:
Value of best static context-dependent policy $q: A \rightarrow \Delta^{N}$,

$$
\mathrm{OPT}=\underset{\max }{q} \quad \mathbb{E}\left[\sum_{t, a \in A_{t}} r_{t, a} q\left(A_{t}\right)_{a}\right], \quad \mathbb{E}\left[\sum_{t: a \in A_{t}} r_{t, a} q\left(A_{t}\right)_{a}\right] \leq B_{a}
$$

- Expectation over distribution of $A_{t} \mathrm{~s}$, and of $r_{t, a}$ given $w, x_{t, a}$.
- OPT is as good as any adaptive solution that knows w AND the distribution of $A_{t} s$.

Further considerations

- Multiple types of feedback - revenue, relevance, cost of serving, click, conversions, demographic targeting
- Multidimensional reward or value vector

Further considerations

- Multiple types of feedback - revenue, relevance, cost of serving, click, conversions, demographic targeting
- Multidimensional reward or value vector
- Nonlinear
- Risk on over-spend, under-delivery
- Diversity of user profiles
- Smooth delivery

Further considerations

- Multiple types of feedback - revenue, relevance, cost of serving, click, conversions, demographic targeting
- Multidimensional reward or value vector
- Nonlinear
- Risk on over-spend, under-delivery
- Diversity of user profiles
- Smooth delivery

Can be modeled as convex constraints and objective

$$
\begin{array}{cc}
\max & f\left(\sum_{t, a} \mathbf{v}_{t, a} y_{t, a}\right) \\
& \sum_{t, a} \mathbf{v}_{t, a} y_{t, a} \in S \\
\forall t, & \sum_{a} y_{t, a} \leq 1
\end{array}
$$

Online decisions with unknown distribution of $\mathbf{v}_{t, a}$!

Linear contextual bandits with global convex constraints

 and objectiveIn every round t, pick one of the many options (arms) in set A_{t}.

- For every $a \in A_{t}$, observe "context vector" $x_{t, a} \in \mathbb{R}^{d}$ before making the choice.
- On pulling arm a, observe vector $\mathbf{v}_{t} \in[0,1]^{d}$

Stochastic assumptions:

- Given that arm a is pulled, vector \mathbf{v}_{t} is i.i.d. from distribution with mean $W^{T} x_{t, a}$, matrix W is unknown.
- Set A_{t} of context vectors is generated i.i.d. from some distribution over collection of context vectors

Linear contextual bandits with global convex constraints

 and objectiveGoal:

- Maximize $f\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{v}_{t}\right)$ while ensuring $\frac{1}{T} \sum_{t=1}^{T} \mathbf{v}_{t} \in S$
- Minimize expected regret:

$$
\text { Regret in Objective }=\mathrm{OPT}-f\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{v}_{t}\right)
$$

OPT is the value of best context-dependent policy (?)

$$
\text { Regret in constraints }=d\left(\frac{1}{T} \sum_{t} \mathbf{v}_{t}, S\right)
$$

$d(\cdot, \cdot)$ is a distance function, e.g. L_{1} distance.

Benchmark

Value of best static context-dependent policy
$\begin{array}{rl}\max _{q} & f\left(\mathbb{E}\left[\left(\sum_{t, a} W^{T} x_{t, a}\right) q\left(A_{t}\right)\right]\right) \text { such that } \\ & \mathbb{E}\left[\left(\sum_{t, a} W^{T} x_{t, a}\right) q\left(A_{t}\right)\right] \in S\end{array}$

- OPT is as good as any adaptive solution that knows W AND the distribution of contexts.

Our results

- $\tilde{O}\left(d T^{-1 / 3}\right)$ regret bounds in both objective and distance from constraint set
- $\tilde{O}(d / \sqrt{T})$ regret bound if
- value of OPT is known to sufficient accuracy.
- concave objective, no constraints
- only constraints: feasibility problem
- Important: no dependence on number of arms (possible user+ad types, which is exponential in d)

Main components of the algorithm

Handling unknown W

- On making an observation, update estimate of W using standard linear contextual bandit techniques

Handling uncertainty in contexts: Even with an accurate W, the problem is difficult: "online stochastic convex programming" [Agrawal, Devanur, SODA 2015].

Overview of the algorithm for known W

One dimensional problem, A_{t} of size 2, objective only. (W.I.o.g. expected reward $w x_{t, a}$ can be replaced by $x_{t, a}$.)

At time t,

- you see random points $\left\{x_{t 1}, x_{t 2}\right\}$ on x-axis (stochastic assumption).
- Choose one of those points as x_{t}^{\dagger}.

Overall goal is to minimize $h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}^{\dagger}\right)$, where h is convex.
Regret

$$
\mathcal{R}(T)=h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}^{\dagger}\right)-h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}^{*}\right)
$$

Overview by example

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

The simpler linear case

$$
h\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)=\frac{1}{T} \sum_{t} h\left(x_{t}\right)
$$

An optimistic algorithm

$$
\ell\left(x_{a v g}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{\text {avg }}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{a v g}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{\text {avg }}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{\text {avg }}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{a v g}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{\text {avg }}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{a v g}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{\text {avg }}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

An optimistic algorithm

$$
\ell\left(x_{a v g}^{\dagger}\right)=\frac{1}{T} \sum_{t} \ell\left(x_{t}^{\dagger}\right) \leq \frac{1}{T} \sum_{t} \ell\left(x_{t}^{*}\right)=\ell\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Upper bound on regret: $h\left(x_{\text {avg }}^{\dagger}\right)-\ell\left(x_{\text {avg }}^{\dagger}\right)$

- If $x_{a v g}^{\dagger}$ was known, tangent at this point would be a linear function with 0 gap: $\ell\left(x_{\text {avg }}^{\dagger}\right)=h\left(x_{\text {avg }}^{\dagger}\right)$
- At time t, use current average as a guess for $x_{a v g}^{\dagger}$ and take tangent (slope is gradient) at that point.
- Algorithm that uses a different tangent at every step.

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)$

Algorithm

$$
\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Algorithm

$$
\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Algorithm

$$
\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Algorithm

$$
\mathbb{E}\left[\ell_{t}\left(x_{t}^{\dagger}\right) \mid H_{t-1}\right] \leq \mathbb{E}\left[\ell_{t}\left(x_{t}^{*}\right) \mid H_{t-1}\right]=\ell_{t}\left(x^{*}\right) \leq h\left(x^{*}\right)
$$

Need to bound the gap $h\left(x_{\text {avg }}^{\dagger}\right)-\mathbb{E}\left[\frac{1}{T} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)\right]$

Need to bound the gap $h\left(x_{\text {avg }}^{\dagger}\right)-\mathbb{E}\left[\frac{1}{T} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)\right]$

- Let $\ell_{t}(x)$ be tangent at current average. For smooth and convex h,

$$
\ell_{t}(x):=h\left(x_{\text {avg }, t-1}\right)+\nabla h\left(x_{\text {avg }, t-1}\right)\left(x-x_{\text {avg }, t-1}\right) \leq h(x)
$$

Need to bound the gap $h\left(x_{\text {avg }}^{\dagger}\right)-\mathbb{E}\left[\frac{1}{T} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)\right]$

- Let $\ell_{t}(x)$ be tangent at current average. For smooth and convex h,

$$
\ell_{t}(x):=h\left(x_{\text {avg }, t-1}\right)+\nabla h\left(x_{\text {avg }, t-1}\right)\left(x-x_{\text {avg }, t-1}\right) \leq h(x)
$$

- Assuming β-smoothness,

$$
h(x) \leq h\left(x_{a v g, t-1}\right)+\nabla h\left(x_{a v g, t-1}\right)\left(x-x_{a v g, t-1}\right)+\frac{\beta}{2 t^{2}}
$$

Need to bound the gap $h\left(x_{\text {avg }}^{\dagger}\right)-\mathbb{E}\left[\frac{1}{T} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)\right]$

- Let $\ell_{t}(x)$ be tangent at current average. For smooth and convex h,

$$
\ell_{t}(x):=h\left(x_{a v g}, t-1\right)+\nabla h\left(x_{a v g, t-1}\right)\left(x-x_{a v g, t-1}\right) \leq h(x)
$$

- Assuming β-smoothness,

$$
h(x) \leq h\left(x_{a v g}, t-1\right)+\nabla h\left(x_{\text {avg }, t-1}\right)\left(x-x_{a v g, t-1}\right)+\frac{\beta}{2 t^{2}}
$$

- Applying smoothness property to $x=x_{\text {avg }, t}$, we have a lower bound on $\ell_{t}\left(x_{t}^{\dagger}\right)$:

$$
\frac{1}{t} \ell_{t}\left(x_{t}^{\dagger}\right) \geq h\left(x_{a v g}, t\right)-\frac{(t-1)}{t} h\left(x_{a v g}, t\right)-\frac{\beta}{2 t^{2}}
$$

Need to bound the gap $h\left(x_{\text {avg }}^{\dagger}\right)-\mathbb{E}\left[\frac{1}{T} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)\right]$

- Let $\ell_{t}(x)$ be tangent at current average. For smooth and convex h,

$$
\ell_{t}(x):=h\left(x_{\text {avg }, t-1}\right)+\nabla h\left(x_{\text {avg }, t-1}\right)\left(x-x_{a v g, t-1}\right) \leq h(x)
$$

- Assuming β-smoothness,

$$
h(x) \leq h\left(x_{a v g, t-1}\right)+\nabla h\left(x_{a v g, t-1}\right)\left(x-x_{a v g, t-1}\right)+\frac{\beta}{2 t^{2}}
$$

- Applying smoothness property to $x=x_{\text {avg }, t}$, we have a lower bound on $\ell_{t}\left(x_{t}^{\dagger}\right)$:

$$
\frac{1}{t} \ell_{t}\left(x_{t}^{\dagger}\right) \geq h\left(x_{a v g}, t\right)-\frac{(t-1)}{t} h\left(x_{a v g}, t\right)-\frac{\beta}{2 t^{2}}
$$

- Summing up for $t=1, \ldots, T$ gives $O\left(\frac{\beta}{T}\right)$ bound on $h\left(x_{\text {avg }}\right)-\frac{1}{t} \sum_{t} \ell_{t}\left(x_{t}^{\dagger}\right)$. For convex but non-smooth functions, bound degrades to $\tilde{O}(1 / \sqrt{T})$.

Algorithm Outline

Algorithm 1 Algorithm for minimizing $h\left(\frac{1}{T} \sum_{t=1}^{T} W \mathbf{x}_{t, a_{t}}\right)$, with known W.
for all $t=1 \ldots T$ do
Observe $\mathbf{x}_{t, a}$ for all $a \in A_{t}$.
Guess $\ell_{t}(\cdot)$.

$$
a_{t}:=\arg \min _{a \in A_{t}} \ell_{t}\left(W \mathbf{x}_{t, a}\right)
$$

end for

Note:

- Optimistic guess: $\ell_{t}\left(W \mathbf{x}_{t, a}\right)$ lower bounds $h\left(W \mathbf{x}_{t, a}\right)$
- Regret bounded by the gap at played arms:

$$
h\left(\frac{1}{T} \sum_{t} W \mathbf{x}_{t, a_{t}}\right)-\frac{1}{T} \sum_{t} \ell_{t}\left(W \mathbf{x}_{t, a_{t}}\right) \leq \tilde{O}\left(\frac{\log (d)}{\sqrt{T}}\right)
$$

Handling unknown W

Replace W by its optimistic estimate: in this case lower confidence bound.

Algorithm 2 Algorithm for unknown W
for all $t=1 \ldots T$ do
Observe $\mathbf{x}_{t, a}$ for all $a \in A_{t}$.
For all $a \in A_{t}$, compute lower confidence bound (LCB) $\tilde{W}_{t, a}$ as in linear contextual MAB.
Guess tangent $\ell_{t}(\cdot)$.
Play arm

$$
a_{t}:=\arg \min _{a \in A_{t}} \ell_{t}\left(\tilde{W}_{t, a} \mathbf{x}_{t, a}\right)
$$

Observe $\mathbf{v}_{t}:=\mathbf{v}_{t, a_{t}}$, with expected value $W \mathbf{x}_{t, a_{t}}$ end for

Additional term added to regret:

$$
\left(\frac{1}{T} \sum_{t} \ell_{t}\left(W \mathbf{x}_{t, a_{t}}\right)-\frac{1}{T} \sum_{t} \ell_{t}\left(\tilde{W} \mathbf{x}_{t, a_{t}}\right)\right) \leq \tilde{O}\left(\frac{d}{\sqrt{T}}\right)
$$

Further difficulties

So far: algorithm for minimizing a convex function on average decision. How to handle "maximize concave function given constraint set S "

- "Constraints only" case can be handled by posing problem as "minimize distance from the constraint set"
- If OPT known, convert objective into constraint.
- Estimating OPT, requires further exploration, incurring suboptimal regret $d T^{-1 / 3}$
- Getting d / \sqrt{T} regret (or a tighter lower bound) is open

Thank You

