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Application: Revenue management in internet advertising

I Operating delivery of ads so that long term revenue from the
business is maximized

I Multi-billion dollar annual revenues
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Pay-per click advertising

Advertisers specify target user profiles, payment per click

I user opens a page at time t, matches target profile of many
ads

I pick one ad

I “if the user clicks” on the shown ad, publisher gets paid

Uncertainty in future user profiles, uncertainty in clicks

“Click-through rate” depends on a combination of user profile and
ad features.
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Linear regression model

Click-through rates as a linear function of user and ad features.

I Let xt,a be a vector of features of (user t, ad a) combination

I On serving ad a to the user t, the chances of getting clicked is
wT xt,a for some unknown vector w .

Linear contextual bandit problem: explore-exploit in the feature
space to learn w quickly.
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Linear contextual bandits

In every round t, pick one of the many options (arms) in set At .

I For every a ∈ At , observe “context vector” xt,a ∈ Rd before
making the choice.

I On picking option a, observe reward rt ∈ [0, 1]

Stochastic assumptions

I Reward rt on picking arm a is i.i.d. from distribution with
mean wT xt,a, w is unknown.

I No assumptions on the set At or context vectors – could be
adversarial
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Linear contextual bandits

Goal

I maximize sum of rewards
∑

t rt
I minimize expected regret: compared to best

context-dependent policy

R(T ) =
∑
t

max
a∈At

wT xt,a − E[
∑
t

rt ]

UCB algorithms

I maintain a confidence ellipsoid around least-square estimate of
w , use the most optimistic value w̃t in the ellipsoid at time t

I at step t, play arg maxa∈At w̃
T
t xt,a.

I achieve Õ(d
√
T ) regret
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Further considerations

Budget constraints!

Maximize the total value while not exceeding the budgets

maximize
∑

t,a∈At
rt,ayt,a

∀t,
∑

a∈At
yt,a ≤ 1

∀ads a,
∑

t:a∈At
rt,ayt,a ≤ Ba
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Benchmark: Optimal context dependent policy?

Earlier:

I Maximize
∑

t w
T xt,at

I Optimal choice: at every time step choose

at = arg max
a∈At

wT xt,a

I uncertainty in context set At did not matter, if you knew the
regression parameter w

Now:

I Even if you know w , the choice at every step is not obvious
I Ad a or a′?

I Ad a has highest immediate revenue, but it appears in At very
frequently

I Ad a′ has smaller immediate revenue, but there may not be
another opportunity to use its budget.
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Stochastic assumption and Benchmark

Stochastic assumption on At :

I Set At of context vectors is generated i.i.d. from some
distribution D over collection of sets of context vectors

Benchmark:
Value of best static context-dependent policy q : A→ ∆N ,

OPT =
maxq E[

∑
t,a∈At

rt,a q(At)a]

∀ads a, E[
∑

t:a∈At
rt,a q(At)a] ≤ Ba

I Expectation over distribution of Ats, and of rt,a given w , xt,a.

I OPT is as good as any adaptive solution that knows w AND
the distribution of Ats.
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Further considerations

I Multiple types of feedback – revenue, relevance, cost of
serving, click, conversions, demographic targeting

I Multidimensional reward or value vector

I Nonlinear
I Risk on over-spend, under-delivery
I Diversity of user profiles
I Smooth delivery

Can be modeled as convex constraints and objective

max f (
∑

t,a vt,ayt,a)∑
t,a vt,ayt,a ∈ S

∀t,
∑

a yt,a ≤ 1

Online decisions with unknown distribution of vt,a!
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Linear contextual bandits with global convex constraints
and objective

In every round t, pick one of the many options (arms) in set At .

I For every a ∈ At , observe “context vector” xt,a ∈ Rd before
making the choice.

I On pulling arm a, observe vector vt ∈ [0, 1]d

Stochastic assumptions:

I Given that arm a is pulled, vector vt is i.i.d. from distribution
with mean W T xt,a, matrix W is unknown.

I Set At of context vectors is generated i.i.d. from some
distribution over collection of context vectors
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Linear contextual bandits with global convex constraints
and objective

Goal:

I Maximize f ( 1
T

∑T
t=1 vt) while ensuring 1

T

∑T
t=1 vt ∈ S

I Minimize expected regret:

Regret in Objective = OPT− f (
1

T

T∑
t=1

vt)

OPT is the value of best context-dependent policy (?)

Regret in constraints = d(
1

T

∑
t

vt , S)

d(·, ·) is a distance function, e.g. L1 distance.
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Benchmark

Value of best static context-dependent policy

OPT =
maxq f

(
E
[(∑

t,a W
T xt,a

)
q(At)

])
such that

E
[(∑

t,a W
T xt,a

)
q(At)

]
∈ S

I OPT is as good as any adaptive solution that knows W AND
the distribution of contexts.
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Our results

I Õ(dT−1/3) regret bounds in both objective and distance from
constraint set

I Õ(d/
√
T ) regret bound if

I value of OPT is known to sufficient accuracy.
I concave objective, no constraints
I only constraints: feasibility problem

I Important: no dependence on number of arms (possible
user+ad types, which is exponential in d)
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Main components of the algorithm

Handling unknown W

I On making an observation, update estimate of W using
standard linear contextual bandit techniques

Handling uncertainty in contexts: Even with an accurate W ,
the problem is difficult: “online stochastic convex programming”
[Agrawal, Devanur, SODA 2015].
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Overview of the algorithm for known W

One dimensional problem, At of size 2, objective only.
(W.l.o.g. expected reward wxt,a can be replaced by xt,a.)

At time t,

I you see random points {xt1, xt2} on x-axis (stochastic
assumption).

I Choose one of those points as x†t .

Overall goal is to minimize h( 1
T

∑T
t=1 x

†
t ), where h is convex.

Regret

R(T ) = h(
1

T

T∑
t=1

x†t )− h(
1

T

T∑
t=1

x∗t ).
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Overview by example

x

y

h(x)

••

••• ••• ••• •• • ••
x†avg

•• • •• •• •• •• •• • ••
x∗

Regret
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The simpler linear case

x

y

••

• •• • •• ••• • •• ••
x†avg = x∗

h( 1
T

∑T
t=1 xt) = 1

T

∑
t h(xt)
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An optimistic algorithm

x

y

h(x)

•• •• •• •• ••• • •• ••
x†avg

•
x∗

Imagined gain

Regret

upper bound on regret

`(x†avg ) =
1

T

∑
t

`(x†t ) ≤ 1

T

∑
t

`(x∗t ) = `(x∗) ≤ h(x∗)

Upper bound on regret: h(x†avg )− `(x†avg )
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I If x†avg was known, tangent at this point would be a linear

function with 0 gap: `(x†avg ) = h(x†avg )

I At time t, use current average as a guess for x†avg and take
tangent (slope is gradient) at that point.

I Algorithm that uses a different tangent at every step.
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Algorithm

x

y

h(x)

`1(x)

••`1(x1) • `2(x)••

`2(x2)

•

`3(x)

• •
`3(x3)

•

`4(x)

••`4(x4) •

`5(x)

• •

`5(x5)

•

1
T

∑
t `t(xt)

x∗ x†avg

Regret
upper bound on regret

h(x†avg )

E[`t(x
†
t )|Ht−1] ≤ E[`t(x

∗
t )|Ht−1] = `t(x

∗) ≤ h(x∗)

Need to bound the gap h(x†avg )− E[ 1
T

∑
t `t(x

†
t )]
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Need to bound the gap h(x†avg )− E[ 1
T

∑
t `t(x

†
t )]

I Let `t(x) be tangent at current average. For smooth and
convex h,

`t(x) := h(xavg ,t−1) +∇h(xavg ,t−1)(x − xavg ,t−1) ≤ h(x)

I Assuming β-smoothness,

h(x) ≤ h(xavg ,t−1) +∇h(xavg ,t−1)(x − xavg ,t−1) +
β

2t2

I Applying smoothness property to x = xavg ,t , we have a lower

bound on `t(x
†
t ):

1

t
`t(x

†
t ) ≥ h(xavg ,t)−

(t − 1)

t
h(xavg ,t)−

β

2t2

I Summing up for t = 1, . . . ,T gives O( βT ) bound on

h(xavg )− 1
t

∑
t `t(x

†
t ). For convex but non-smooth functions,

bound degrades to Õ
(

1/
√
T
)

.
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Algorithm Outline

Algorithm 1 Algorithm for minimizing h( 1
T

∑T
t=1W xt,at ), with

known W .

for all t = 1 . . .T do
Observe xt,a for all a ∈ At .
Guess `t(·).

at := arg min
a∈At

`t(W xt,a).

end for

Note:
I Optimistic guess: `t(W xt,a) lower bounds h(W xt,a)
I Regret bounded by the gap at played arms:

h(
1

T

∑
t

W xt,at )−
1

T

∑
t

`t(W xt,at ) ≤ Õ

(
log(d)√

T

)
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Handling unknown W
Replace W by its optimistic estimate: in this case lower confidence
bound.

Algorithm 2 Algorithm for unknown W

for all t = 1 . . .T do
Observe xt,a for all a ∈ At .
For all a ∈ At , compute lower confidence bound (LCB) W̃t,a as
in linear contextual MAB.
Guess tangent `t(·).
Play arm

at := arg min
a∈At

`t(W̃t,axt,a).

Observe vt := vt,at , with expected value W xt,at
end for

Additional term added to regret:(
1
T

∑
t `t(W xt,at )− 1

T

∑
t `t(W̃ xt,at )

)
≤ Õ

(
d√
T

)
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Further difficulties

So far: algorithm for minimizing a convex function on average
decision. How to handle “maximize concave function given
constraint set S”

I “Constraints only” case can be handled by posing problem as
“minimize distance from the constraint set”

I If OPT known, convert objective into constraint.

I Estimating OPT, requires further exploration, incurring
suboptimal regret dT−1/3

I Getting d/
√
T regret (or a tighter lower bound) is open
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Thank You
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