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Application: Revenue management in internet advertising

» Operating delivery of ads so that long term revenue from the
business is maximized

» Multi-billion dollar annual revenues
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Pay-per click advertising

Advertisers specify target user profiles, payment per click

> user opens a page at time t, matches target profile of many
ads

> pick one ad
> “if the user clicks” on the shown ad, publisher gets paid

Uncertainty in future user profiles, uncertainty in clicks

“Click-through rate” depends on a combination of user profile and
ad features.
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Linear regression model

Click-through rates as a linear function of user and ad features.
> Let x; 5 be a vector of features of (user t, ad a) combination

» On serving ad a to the user t, the chances of getting clicked is

WTXLa for some unknown vector w.

Linear contextual bandit problem: explore-exploit in the feature
space to learn w quickly.
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Linear contextual bandits

In every round t, pick one of the many options (arms) in set A;.

» For every a € A;, observe “context vector” x; , € RY before
making the choice.

» On picking option a, observe reward r; € [0, 1]
Stochastic assumptions

» Reward r; on picking arm a is i.i.d. from distribution with
mean WTXt7a, w is unknown.

» No assumptions on the set A; or context vectors — could be
adversarial
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Linear contextual bandits

Goal
» maximize sum of rewards >, r;

> minimize expected regret: compared to best
context-dependent policy

R(T) =) max wixea —E[) _rl
t t t

UCB algorithms

» maintain a confidence ellipsoid around least-square estimate of
w, use the most optimistic value w; in the ellipsoid at time t

> at step t, play arg max,ea, W, x¢ 2.
> achieve O(dV/T) regret

6
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Further considerations

Budget constraints!
Maximize the total value while not exceeding the budgets

maximize Zt,aeAt reaYta
vt7 ZagAt yt,a S 1
Vads a, Zt:aeAt rt,aYt,a <B,
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Benchmark: Optimal context dependent policy?

Earlier:

» Maximize Y, w'x s,
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Benchmark: Optimal context dependent policy?

Earlier:
» Maximize Y, w'x s,
» Optimal choice: at every time step choose

a; = arg max WTXLa
acA;

> uncertainty in context set A; did not matter, if you knew the
regression parameter w

Now:

» Even if you know w, the choice at every step is not obvious
» Ad aor a?

» Ad a has highest immediate revenue, but it appears in A; very
frequently

» Ad a’ has smaller immediate revenue, but there may not be
another opportunity to use its budget.
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Stochastic assumption and Benchmark

Stochastic assumption on A;:

> Set A; of context vectors is generated i.i.d. from some
distribution D over collection of sets of context vectors

Benchmark:
Value of best static context-dependent policy g : A — AN,

OPT = maXq E[Zt,aeAt rt,a q(At)al
Vads a, E[}_;..ca, t.a 9(At)a] < Ba

» Expectation over distribution of A;s, and of r; , given w, x; 5.

» OPT is as good as any adaptive solution that knows w AND
the distribution of A;s.
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Further considerations

» Multiple types of feedback — revenue, relevance, cost of
serving, click, conversions, demographic targeting

» Multidimensional reward or value vector
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Further considerations

» Multiple types of feedback — revenue, relevance, cost of
serving, click, conversions, demographic targeting

» Multidimensional reward or value vector
» Nonlinear

» Risk on over-spend, under-delivery
» Diversity of user profiles
» Smooth delivery

Can be modeled as convex constraints and objective

max f(Zt,a Vi aYta)
Zt,a VtaVta € S
\V/t, Za }’t,a S ]-

Online decisions with unknown distribution of v ,!
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Linear contextual bandits with global convex constraints
and objective

In every round t, pick one of the many options (arms) in set A;.

» For every a € Ay, observe “context vector” x; , € RY before
making the choice.

» On pulling arm a, observe vector v; € [0,1]¢
Stochastic assumptions:
» Given that arm a is pulled, vector v; is i.i.d. from distribution
with mean WTxt,a, matrix W is unknown.

> Set A; of context vectors is generated i.i.d. from some
distribution over collection of context vectors
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Linear contextual bandits with global convex constraints
and objective

Goal:
o 1T - 1T
» Maximize f(+ >, ;vt) while ensuring +>°,_ ;v €S
> Minimize expected regret:

;
1
Regret in Objective = OPT — f(— > )
t=1

OPT is the value of best context-dependent policy (7)

1
Regret in constraints = d(7 th, S)
t

d(-,-) is a distance function, e.g. L distance.
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Benchmark

Value of best static context-dependent policy

maxg [(Zta WTx, a) At)D such that

oPT = (ztvaw xis) alAn)] €5

» OPT is as good as any adaptive solution that knows W AND
the distribution of contexts.
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Our results

» O(dT~1/3) regret bounds in both objective and distance from
constraint set
» O(d/V/T) regret bound if
» value of OPT is known to sufficient accuracy.
» concave objective, no constraints
» only constraints: feasibility problem
» Important: no dependence on number of arms (possible
user+ad types, which is exponential in d)

14 /26



Main components of the algorithm

Handling unknown W

» On making an observation, update estimate of W using
standard linear contextual bandit techniques

Handling uncertainty in contexts: Even with an accurate W,
the problem is difficult: “online stochastic convex programming”
[Agrawal, Devanur, SODA 2015].
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Overview of the algorithm for known W

One dimensional problem, A; of size 2, objective only.
(W.l.o.g. expected reward wx; , can be replaced by x; ,.)

At time t,

» you see random points {x¢1, x¢2} on x-axis (stochastic
assumption).

» Choose one of those points as xtT

Overall goal is to minimize h(+ Zt 1xt) where h is convex.
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Overview by example
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Overview by example
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The simpler linear case

H
X

h(F X1 x) = 7 X, hx)
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The simpler linear case

® e e—Ox

Xavg = X

h(F X1 x) = 7 X, hx)
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An optimistic algorithm
y

1 1 . . i}
(i) = 7 D) < 5D H0¢) = Ux") < h(x')
t t
Upper bound on regret: h(x;vg) - B(x;fvg)
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An optimistic algorithm
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An optimistic algorithm
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> If xgvg was known, tangent at this point would be a linear
function with 0 gap: £(x;rvg) = h(xgvg)

» At time t, use current average as a guess for X;vg and take
tangent (slope is gradient) at that point.

» Algorithm that uses a different tangent at every step.

20/26



Algorithm

E[6:(])|He-1] < EEe(x¢)|Hea] = £(x") < h(x)
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Need to bound the gap h(xlv) — E[+ 32, £:(x])]
> Let /:(x) be tangent at current average. For smooth and
convex h,
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Need to bound the gap h(xlv) — E[+ 32, £:(x])]
> Let /:(x) be tangent at current average. For smooth and
convex h,

gt(X) = h(Xavg,t—l) + Vh(Xavg,t—l)(X - Xavg,t—l) < h(X)

» Assuming [-smoothness,

B(x) < (og-1) + VhlKavg-1)(X — Xovg.t-1) + 55
» Applying smoothness property to x = X,z ¢+, we have a lower
bound on Et(xtT):

1
;ft(XZ) > h(Xavg,t) —

(t-1)

(o) = 55
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Need to bound the gap h(xlv) — E[+ 32, £:(x])]
> Let /:(x) be tangent at current average. For smooth and
convex h,

gt(X) = h(Xavg,t—l) + Vh(Xavg,t—l)(X - Xavg,t—l) < h(X)

» Assuming [-smoothness,

h(X) < h(Xavg,tfl) + vh(Xavg,tfl)(X - Xavg,tfl) + @

» Applying smoothness property to x = X,z ¢+, we have a lower
bound on Et(xtT):

Lot

Eet(xt) > h(Xavg,t) - M

t

g

h(Xavg,t) — 22

» Summing up for t =1,..., T gives O( ) bound on

h(Xavg) — 1 tht(xt) For convex but non-smooth functions,
bound degrades to O (1/\/>)
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Algorithm Outline

Algorithm 1 Algorithm for minimizing h(+ ZtT:1 Wx¢ ,.), with
known W.

forallt=1...T do
Observe x; , for all a € A.
Guess /4(+).

ay 1= arg min Le(Wx¢ ).
acA;

end for

Note:
» Optimistic guess: £¢(Wx; ,) lower bounds h(Wx; ,)
» Regret bounded by the gap at played arms:

HT Y W) = 3 3 (W) < 0 (52
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Handling unknown W

Replace W by its optimistic estimate: in this case lower confidence
bound.

Algorithm 2 Algorithm for unknown W

forallt=1...T do
Observe x; , for all a € A.
For all a € A¢, compute lower confidence bound (LCB) Wm as
in linear contextual MAB.
Guess tangent £¢(-).
Play arm

ar = arg min L¢(Ws 2X¢ ).
acA;

Observe v; := v; 5,, with expected value Wx; ,,
end for

Additional term added to regret:
(33t (Waea) = 1 5, 6 We)) < 0 ()
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Further difficulties

So far: algorithm for minimizing a convex function on average
decision. How to handle “maximize concave function given
constraint set S"

» “Constraints only” case can be handled by posing problem as
“minimize distance from the constraint set”

» If OPT known, convert objective into constraint.

» Estimating OPT, requires further exploration, incurring
suboptimal regret d71/3

» Getting d/+/T regret (or a tighter lower bound) is open
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Thank You
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