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Bandits for large scale problems

In the classical bandit setting, it is usually assumed that the
number of actions A is smaller than the horizon n, i.e.

A ≤ n,

so that each action can be sampled at least once.

Here large scale problems are problems where A� n.
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The bandit setting

Stochastic bandit setting

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], etc.

I Distributions (νa)a≤A with
unknown characteristics

I Limited sampling resources n

I At each time t, choose at and
collect Xt ∼ νat

I Some objective, e.g. maximize∑
tXt
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The bandit setting

Stochastic bandit setting

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], etc.

I Distributions (νa)a≤A with
unknown characteristics

I Limited sampling resources n

I At each time t, choose at and
collect Xt ∼ νat

I Some objective, e.g. maximize∑
tXt

Objective of allocation when
e.g. maximizing

∑
tXt :

I Estimate all means µa of
distributions (exploration)

I So that one finds the one
with highest mean µ∗ and
samples it (exploitation)

Because of the noise to the
samples, there is this
exploration/exploitation
trade-off.
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The bandit setting

Stochastic bandit setting

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], etc.

I Distributions (νa)a≤A with
unknown characteristics

I Limited sampling resources n

I At each time t, choose at and
collect Xt ∼ νat

I Some objective, e.g. maximize∑
tXt

Popular solution to this
trade-off is to sample the arm
that maximizes an UCB [Auer

et.al.(2002)] :

Ba,t = µ̂a,t + c

√
log(n)

Ta,t
.

Theorem

The exp. regret is bounded as

ERn = nµ∗ − E
∑
t

Xt

≤ c
√
nA log(n).
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The bandit setting

Stochastic bandit setting

Main question in this talk is on
the scale of the problem.

Large scale aim

A� n.

Possible alternative objectives :
I Noisy optimisation Bubeck et

al., 2010, Kaufman et al., 2012, Gabillon

et al., 2012, Valko et al., 2013.

I Uniform functional
estimation Antos et al., 2010, C et

al., 2012, C et al., 2013.

I Stratified Monte-Carlo
integration Grover et al., 2010, C

et al., 2012, 2013, 2014.

I Extreme value
detection Smith et al, 2009, C and

Valko, 2014.
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Some alternative objectives

Noisy optimisation [Kleinberg et. al, 2008, Bubeck et
al., 2010, Kaufman et al., 2012, Gabillon et al., 2012]

In the cumulative bandit setting, the objective is

max
∑
t

Xt.

A useful variant is the pure exploration variant of this setting
where the aim is to return at the end of the budget k̂n such that
µk̂n is as large as possible (as close as possible to the optimal
value µ∗). This is noisy optimisation in the bandit setting.

m*
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Some alternative objectives

Adaptive stratified functional estimation [Antos et al.,
2010, C et al., 2012, C et al., 2013]

Each stratum has measure wk and sampling randomly in it
results in a sample X ∼ νk(µk, σ2k).
Objective : Sample optimally in the strata to estimate the
integral µ of the function and minimize

max
k

E(µ̂k − µk)2 = max
k

σ2k
Tk
.
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Some alternative objectives

Adaptive stratified Monte-Carlo integration [Grover et
al., 2010, C et al., 2012, 2013, 2014]

Each stratum has measure wk and sampling randomly in it
results in a sample X ∼ νk(µk, σ2k).
Objective : Sample optimally in the strata to estimate the
integral µ of the function and minimize

E(µ̂n − µ)2 =
∑
k

w2
kσ

2
k

Tk
.



Bandits with alternative objectives Large scale problems (A� n)

Outline

Bandits with alternative objectives
The bandit setting
Some alternative objectives

Large scale problems (A� n)
Linear topology
Smooth topology
No topology



Bandits with alternative objectives Large scale problems (A� n)

The “large scale” situation

Two main lines of work in order to solve this problem :

1. Topological assumptions on the distributions :
There is a topology on the distributions so that
information on a distribution provides information on other
options as well. Examples :

1.1 Linear topology.
1.2 Smooth topology.

2. No Topological assumptions on the distributions :
There is no topology on the options. Can represent also
smooth topology in high dimension.
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Linear topology

Linear topology : setting [Auer, 2002]
Problem :The set of arms A is a subset of RD, and α∗ ∈ RD is
an unknown parameter. At each time step t,

I Select at ∈ A,

I Observe Xt = 〈at, α∗〉+ ηt, where E[ηt|at] = 0.

Let a∗ = arg maxa∈A〈a, α∗〉 be the best arm in A.
Define the regret:

ERn = n〈a∗, α∗〉 − E
n∑
t=1

Xt.

No need to estimate the mean-reward of all arms, estimating α∗

is enough [Auer, 2002], [Dani, Hayes, Kakade, 2008],

[Abbasi-Yadkori, 2009], [Rusmevichientong, Tsitsiklis, 2010], [Filippi,

Cappé, Garivier, Szepesvári, 2010].
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Linear topology

Linear topology : UCB-based (ConfidenceBall)
algorithm

Idea: Build a high prob-
ability confidence set Et
s.t. α∗ ∈ Et w.h.p. and
play the arm a ∈ A that
maximizes

Ba,t = max
α∈Et
〈a, α〉.

Et

X

IRD

0
at
a∗

α̂t

α∗
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Linear topology

Linear Topology : Regret analysis and extensions

Theorem ((Dani, Hayes, Kakade, 2008, Rusmevichientong,
Tsitsiklis, 2010))

The expected regret of ConfidenceBall is bounded as

ERn ≤ D
√
n(log n)3/2

Possible extensions

I Generalized Linear models [Filippi, Cappé, Garivier,

Szepesvári, 2010]..

I Sparse linear bandits in high dimension [C and Munos,

2012].



Bandits with alternative objectives Large scale problems (A� n)

Linear topology

Extension to high dimensional and sparse linear bandits
[C and Munos, 2012]

Linear bandit algorithm work if D � n. But what if D ≥ n? In
general nothing is possible but under the assumption that α∗ is
k-sparse and that A is the unit-ball, a solution is to first explore
the space at random until the support of the signal is detected
(CS phase) approximately, and then run ConfidenceBall on the
right support (SL-UCB).

Theorem (C and Munos, 2012)

The expected regret of SL-UCB is bounded as

ERn ≤ k
√
n(logD)3/2
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Smooth topology

Smooth topology : setting [Kleinberg et.al., 2008]

Problem: Let f : A → R, assumed to be Lipschitz:
|f(x)− f(y)| ≤ `(x, y).

I At each time step t, select at ∈ A
I Observe Xt = f(at) + ηt

Define the cumulative regret

Rn = nf∗ −
n∑
t=1

Xt,

where f∗ = supa∈A f(a)
Continuous stochastic optimization as a bandit problem
[Kleinberg et.al., 2008, Srinivas et.al., 2009, Grünewälder et.al., 2010,

Krause et.al.,2011, Bubeck et.al., 2010, Valko et.al.,2013].
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Smooth topology

Smooth topology : UCB-based (HOO) algorithm

Stochastic
confidence 
term

Domain
confidence 
term

R(a) a

f(a)

Idea : Choose a small region R(a) around a and sample the
arm that maximizes

Ba,t = µ̂R(a),t + SCT (a) +DCT (a).
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Smooth topology

Smooth Topology : Regret analysis

Theorem ((Kleinberg et.al., 2008, Bubeck et.al., 2010))

Let d be the near-optimality dimension of f in A: i.e. such
that the set of ε-optimal actions

Xε = {x ∈ A, f(x) ≥ f∗ − ε}

can be covered by O(ε−d) balls of radius ε.
The expected regret of HOO is bounded as

ERn ≤ Dn
d+1
d+2 .
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Smooth topology

Extensions

I Unknown smoothness [Munos, 2013, Bull, 2014, Valko et al,

2015].

I Simple regret [Valko et.al., 2013].

I Continuous MC integration [C and Munos, 2013 a)b), 2014],

[Pietquin et al., 2013].

I Uniform functional estimation [C and Maillard, 2013, Bull,

2013].
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Smooth topology

Continuous MC integration [C and Munos, 2014]
Assume that we want to integrate the function f and we can
sample it n times and get at time t if sampling in xt

yt = f(xt) + s(t)ηt,

where V(ηt) = 1. The oracle optimal sampling stratgy has risk( ∫
X s(x)dx

)2
n .

Theorem

Assume that |f(x)− f(y)| ≤ `(x, y) = L‖x− y‖α and s also
α-Hölder and A = [0, 1]D. Then algorithm MC-ULCB outputing
µ̂n estimating

∫
f satisfies

E(µ̂n −
∫
f)2 −

( ∫
s(x)dx

)2
n

≤ CD
2α
3d

+ 1
2

√
log(n)n−

d+4α
d+3α .
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No topology

No topology : setting [Berry, Chen, Zame, Heath,
Shepp, 1997]

Problem: Solve the stochastic bandit problem with A� n
(potentially A =∞).

I At each time step t, select at ∈ A
I Observe Xt ∼ νat

Define the cumulative regret

Rn = nµ∗ −
n∑
t=1

Xt,

where µ∗ = supa∈A µk
Standard strategies do not apply when A� n - need to
sub-sample [Banks, Sundaram, 1992], [Berry, Chen, Zame, Heath,

Shepp, 1997], [Wang, Audibert, Munos, 2008], [Bonald and Proutiere,

2008], [C and Valko, 2015].
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No topology

No topology setting
I Arm reservoir distr. and an

associated mean reservoir distr. F

I Limited sampling resources n,
and K0 = 0 observed arms

At time t ≤ n one can either

I set Kt = Kt−1 + 1 and sample a
new arm νKt from the reservoir
distr. with mean µKt ∼ F , and
set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective : Maximize
∑
tXt.

At time t = 0 :

1 - Mean reservoir distribution

µ*
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No topology

No topology setting
I Arm reservoir distr. and an

associated mean reservoir distr. F

I Limited sampling resources n,
and K0 = 0 observed arms

At time t ≤ n one can either

I set Kt = Kt−1 + 1 and sample a
new arm νKt from the reservoir
distr. with mean µKt ∼ F , and
set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective : Maximize
∑
tXt.

At time t... :

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...
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No topology

No topology setting
I Arm reservoir distr. and an

associated mean reservoir distr. F

I Limited sampling resources n,
and K0 = 0 observed arms

At time t ≤ n one can either

I set Kt = Kt−1 + 1 and sample a
new arm νKt from the reservoir
distr. with mean µKt ∼ F , and
set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective : Maximize
∑
tXt.

Double exploration and
exploitation dilemma here :
Allocation both to (i) learn the
characteristics of the arm reservoir
distr. (meta-exploration) and (ii)
learn the characteristics of the arms
(exploitation) and (iii) to maximize
the sum of rewards (exploitation).

Main questions

How many arms should be sampled
from the arm reservoir distribution?
How aggressively should these arms
be explored? What should be left for
exploitation?
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No topology

No topology : UCB-based (UCB-AIR) algorithm

1 - Distribution on action means

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

Idea : Sub-sample the actions uniformly at random and adapt
the number of actions to the proportion of sub-optimal actions.
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No topology

No Topology : Regret analysis

Algorithm UCB-AIR : sub-sample Kn ≈ nmin(β/2,β/(β+1)) arms
and sample the arm that maximize an UCB.

Theorem ((Wang, Audibert, Munos, 2008))

Assume that ∃β > 0 such that

P(µ(new arm) > µ∗ − ε) ≈ Cεβ.

Then the expected regret of UCB-AIR is bounded as

ERn ≤ C max
(√
n, n

β
1+β
)
.

Extensions : optimisation [C and Valko, 2015].
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No topology and optimisation [C and Valko, 2015]

Problem: Return an arm k̂n such that µk̂n is as large as
possible.
Algorithm SiRI : sub-sample Kn ≈ nmin(β,2)/2 arms and sample
the arm that maximize an UCB.

Theorem (C and Valko, 2015)

For SiRI we have up to log(n) factors

E(µ∗ − µk̂n) ≤
(

max
(
n−1/2, n

− 1
β

))
.



Bandits with alternative objectives Large scale problems (A� n)

No topology

Conclusion

Depending on the assumptions, many possible strategies.
Importance of :

I Minimal model assumptions

I Computational efficiency and simplicity

I Minimal calibration and versatility

Challenges :

I Good context integration

I Right assumptions

I Estimation of the regret of the srategies
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