Multi-armed bandits in dynamic pricing

Arnoud den Boer

University of Twente, Centrum Wiskunde \& Informatica Amsterdam

Lancaster, January 11, 2016

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.
- Each period $t=1, \ldots, T$:
(i) choose selling price p_{t};

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.
- Each period $t=1, \ldots, T$:
(i) choose selling price p_{t};
(ii) observe demand

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ are unknown parameters in known set Θ, ϵ_{t} unobservable random disturbance term;

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.
- Each period $t=1, \ldots, T$:
(i) choose selling price p_{t};
(ii) observe demand

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ are unknown parameters in known set Θ, ϵ_{t} unobservable random disturbance term;
(iii) collect revenue $p_{t} d_{t}$.

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.
- Each period $t=1, \ldots, T$:
(i) choose selling price p_{t};
(ii) observe demand

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ are unknown parameters in known set Θ, ϵ_{t} unobservable random disturbance term;
(iii) collect revenue $p_{t} d_{t}$.

- Which non-anticipating prices p_{1}, \ldots, p_{T} maximize cumulative expected revenue $\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]$?

Dynamic pricing

- A firm sells a product, with abundant inventory, during $T \in \mathbb{N}$ discrete time periods.
- Each period $t=1, \ldots, T$:
(i) choose selling price p_{t};
(ii) observe demand

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ are unknown parameters in known set Θ, ϵ_{t} unobservable random disturbance term;
(iii) collect revenue $p_{t} d_{t}$.

- Which non-anticipating prices p_{1}, \ldots, p_{T} maximize cumulative expected revenue $\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]$?

Myopic pricing

An intuitive solution:

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.

Myopic pricing

An intuitive solution:

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data;
(ii) set

$$
p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }}
$$

Myopic pricing

An intuitive solution:

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data;
(ii) set

$$
p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }}
$$

- 'Always choose the perceived optimal action'.

Convergence

Does $\hat{\theta}_{t}$ converge to θ as $t \rightarrow \infty$?

Convergence

Does $\hat{\theta}_{t}$ converge to θ as $t \rightarrow \infty$?
No
It seems that $\hat{\theta}_{t}$ always converges, but w.p. zero to the true θ. Open problem.

Convergence

Does $\hat{\theta}_{t}$ converge to θ as $t \rightarrow \infty$?
No
It seems that $\hat{\theta}_{t}$ always converges, but w.p. zero to the true θ. Open problem.

Caused by the prevalence of indeterminate equilibria: Parameter estimates such that the true expected demand at the myopic optimal price equals the predicted expected demand.

Indeterminate equilibria

If $\hat{\theta}$ suff. close to θ, then $\underset{p}{\arg \max } p \cdot\left(\hat{\theta}_{1}+\hat{\theta}_{2} p\right)=-\hat{\theta}_{1} /\left(2 \hat{\theta}_{2}\right)$.
Then:
'True' expected demand: $\theta_{1}+\theta_{2} \frac{-\hat{\theta}_{1}}{2 \hat{\theta}_{2}}$.
'Predicted' expected demand: $\hat{\theta}_{1}+\hat{\theta}_{2} \frac{-\hat{\theta}_{1}}{2 \hat{\theta}_{2}}$.

Indeterminate equilibria

If $\hat{\theta}$ suff. close to θ, then $\underset{p}{\arg \max } p \cdot\left(\hat{\theta}_{1}+\hat{\theta}_{2} p\right)=-\hat{\theta}_{1} /\left(2 \hat{\theta}_{2}\right)$.
Then:
'True' expected demand: $\theta_{1}+\theta_{2} \frac{-\hat{\theta}_{1}}{2 \hat{\theta}_{2}}$.
'Predicted' expected demand: $\hat{\theta}_{1}+\hat{\theta}_{2} \frac{-\hat{\theta}_{1}}{2 \hat{\theta}_{2}}$.
If (1) equals (2), then $\hat{\theta}$ is an IE.
Model output 'confirms' correctness of the (incorrect) estimates.

Indeterminate equilibria: example

Back to original problem

Which non-anticipating prices p_{1}, \ldots, p_{T} maximize

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

or, equivalently, minimize the $\operatorname{Regret}(T)$

$$
\max _{\theta \in \Theta} \mathbb{E}\left[T \cdot \max _{p} p \cdot\left(\theta_{1}+\theta_{2} p\right)-\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

Back to original problem

Which non-anticipating prices p_{1}, \ldots, p_{T} maximize

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

or, equivalently, minimize the $\operatorname{Regret}(T)$

$$
\max _{\theta \in \Theta} \mathbb{E}\left[T \cdot \max _{p} p \cdot\left(\theta_{1}+\theta_{2} p\right)-\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

- Exact solution intractable

Back to original problem

Which non-anticipating prices p_{1}, \ldots, p_{T} maximize

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

or, equivalently, minimize the $\operatorname{Regret}(T)$

$$
\max _{\theta \in \Theta} \mathbb{E}\left[T \cdot \max _{p} p \cdot\left(\theta_{1}+\theta_{2} p\right)-\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

- Exact solution intractable
- Myopic pricing not optimal

Back to original problem

Which non-anticipating prices p_{1}, \ldots, p_{T} maximize

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

or, equivalently, minimize the $\operatorname{Regret}(T)$

$$
\max _{\theta \in \Theta} \mathbb{E}\left[T \cdot \max _{p} p \cdot\left(\theta_{1}+\theta_{2} p\right)-\sum_{t=1}^{T} p_{t} d_{t}\right]
$$

- Exact solution intractable
- Myopic pricing not optimal
- Let's find asymptotically optimal policies: smallest growth rate of $\operatorname{Regret}(T)$ in T.

Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

$$
\left\|\hat{\theta}_{t}-\theta\right\|^{2}=O\left(\frac{\log t}{t \operatorname{Var}\left(p_{1}, \ldots, p_{t}\right)}\right) \text { a.s. }
$$

Lai and Wei, Annals of Statistics, 1982.

Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

$$
\left\|\hat{\theta}_{t}-\theta\right\|^{2}=O\left(\frac{\log t}{t \operatorname{Var}\left(p_{1}, \ldots, p_{t}\right)}\right) \text { a.s. }
$$

Lai and Wei, Annals of Statistics, 1982.
To ensure convergence of $\hat{\theta}_{t}$, some amount of experimentation is necessary.

Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

$$
\left\|\hat{\theta}_{t}-\theta\right\|^{2}=O\left(\frac{\log t}{t \operatorname{Var}\left(p_{1}, \ldots, p_{t}\right)}\right) \text { a.s. }
$$

Lai and Wei, Annals of Statistics, 1982.
To ensure convergence of $\hat{\theta}_{t}$, some amount of experimentation is necessary. But, not too much.

'Controlled Variance pricing'

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data; (ii) set

$$
p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right), ~}
$$

'Controlled Variance pricing'

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data; (ii) set

$$
p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }}
$$

'Controlled Variance pricing'

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data; (ii) set

$$
\begin{aligned}
& p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }} \\
& \text { s.t. } t \cdot \operatorname{Var}\left(p_{1}, \ldots, p_{t+1}\right) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

'Controlled Variance pricing'

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data; (ii) set

$$
\begin{aligned}
& p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }} \\
& \text { s.t. } t \cdot \operatorname{Var}\left(p_{1}, \ldots, p_{t+1}\right) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$ for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.

'Controlled Variance pricing'

- Choose arbitrary initial prices $p_{1} \neq p_{2}$.
- For each $t \geq 2$:
(i) determine LS estimate $\hat{\theta}_{t}$ of θ, based on available sales data; (ii) set

$$
\begin{aligned}
& p_{t+1}=\underset{p}{\arg \max p \cdot\left(\hat{\theta}_{t 1}+\hat{\theta}_{t 2} p\right) \quad \text { perceived optimal decision }} \\
& \text { s.t. } t \cdot \operatorname{Var}\left(p_{1}, \ldots, p_{t+1}\right) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.

- 'Always choose the perceived optimal action that induces sufficient experimentation'.

'Controlled Variance pricing' - performance

- Regret $(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.

'Controlled Variance pricing' - performance

- $\operatorname{Regret}(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.

'Controlled Variance pricing' - performance

- $\operatorname{Regret}(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.
- Optimal f gives $\operatorname{Regret}(T)=O(\sqrt{T \log T})$.

'Controlled Variance pricing' - performance

- $\operatorname{Regret}(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.
- Optimal f gives $\operatorname{Regret}(T)=O(\sqrt{T \log T})$.
- No policy beats \sqrt{T}.

'Controlled Variance pricing' - performance

- Regret $(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.
- Optimal f gives $\operatorname{Regret}(T)=O(\sqrt{T \log T})$.
- No policy beats \sqrt{T}.

Thus, you can characterize asymptotically (near)-optimal amount of experimentation.

'Controlled Variance pricing' - performance

- $\operatorname{Regret}(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.
- Optimal f gives $\operatorname{Regret}(T)=O(\sqrt{T \log T})$.
- No policy beats \sqrt{T}.

Thus, you can characterize asymptotically (near)-optimal amount of experimentation.
(the optimal 'constant' is not yet known, in general).

Extension: multiple products

K products: price vector $\mathbf{p}_{t}=\left(p_{t}(1), \ldots, p_{t}(K)\right)^{\top}$, demand vector $\mathbf{d}_{t}=\boldsymbol{\theta}\binom{1}{\mathbf{p}_{t}}+\boldsymbol{\epsilon}$, matrix $\boldsymbol{\theta}$, noise-vector $\boldsymbol{\epsilon}$.

Extension: multiple products

K products: price vector $\mathbf{p}_{t}=\left(p_{t}(1), \ldots, p_{t}(K)\right)^{\top}$, demand vector $\mathbf{d}_{t}=\boldsymbol{\theta}\binom{1}{\mathbf{p}_{t}}+\boldsymbol{\epsilon}$, matrix $\boldsymbol{\theta}$, noise-vector $\boldsymbol{\epsilon}$.

Convergence rates of LS-estimator:

$$
\left\|\hat{\boldsymbol{\theta}}_{t}-\boldsymbol{\theta}\right\|^{2}=O\left(\frac{\log t}{\lambda_{\min }(t)}\right) \text { a.s. }
$$

where $\lambda_{\min }(t)$ is the smallest eigenvalue of the information matrix

$$
\sum_{i=1}^{t}\left(\begin{array}{ll}
1 & \mathbf{p}_{i}^{\top} \\
\mathbf{p}_{i} & \mathbf{p}_{i} \mathbf{p}_{i}^{\top}
\end{array}\right)
$$

Extension: multiple products

Same type of policy:

$$
\mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}}
$$

Extension: multiple products

Same type of policy:

$$
\mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision }
$$

Extension: multiple products

Same type of policy:

$$
\begin{aligned}
& \mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision } \\
& \text { s.t. } \lambda_{\min }(t+1) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

Extension: multiple products

Same type of policy:

$$
\begin{aligned}
& \mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision } \\
& \text { s.t. } \lambda_{\min }(t+1) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.

Extension: multiple products

Same type of policy:

$$
\begin{aligned}
& \mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision } \\
& \text { s.t. } \lambda_{\min }(t+1) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.
Problem: $\lambda_{\min }(t+1)$ is a complicated object.

Extension: multiple products

Same type of policy:

$$
\begin{aligned}
& \mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision } \\
& \text { s.t. } \lambda_{\min }(t+1) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.
Problem: $\lambda_{\min }(t+1)$ is a complicated object.
Convertible to non-convex but tractable quadratic constraint.

Extension: multiple products

Same type of policy:

$$
\begin{aligned}
& \mathbf{p}_{t+1}=\underset{\mathbf{p}}{\arg \max } \mathbf{p}^{\top} \hat{\boldsymbol{\theta}}_{t}\binom{1}{\mathbf{p}} \quad \text { perceived optimal decision } \\
& \text { s.t. } \lambda_{\min }(t+1) \geq f(t), \quad \text { 'information constraint' }
\end{aligned}
$$

for some increasing $f: \mathbb{N} \rightarrow(0, \infty)$.
Problem: $\lambda_{\min }(t+1)$ is a complicated object.

Convertible to non-convex but tractable quadratic constraint.
$\operatorname{Regret}(T)=O\left(f(T)+\sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$,
optimal f gives $\operatorname{Regret}(T)=O(\sqrt{T \log T})$.

Many more extensions

- Non-linear demand functions (generalized linear models) $\mathbb{E}[D(p)]=h\left(\theta_{1}+\theta_{2} p\right) ;$

Many more extensions

- Non-linear demand functions (generalized linear models) $\mathbb{E}[D(p)]=h\left(\theta_{1}+\theta_{2} p\right) ;$
- Time-varying markets (how much data to use for inference?)

Many more extensions

- Non-linear demand functions (generalized linear models) $\mathbb{E}[D(p)]=h\left(\theta_{1}+\theta_{2} p\right) ;$
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)

Many more extensions

- Non-linear demand functions (generalized linear models) $\mathbb{E}[D(p)]=h\left(\theta_{1}+\theta_{2} p\right) ;$
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
- Competition (repeated games with incomplete information? Mean field games with learning?)

Many more extensions

- Non-linear demand functions (generalized linear models) $\mathbb{E}[D(p)]=h\left(\theta_{1}+\theta_{2} p\right) ;$
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
- Competition (repeated games with incomplete information? Mean field games with learning?)
den Boer (2015) Surveys in Operations Research and Management Science 20(1)

Why a parametric demand model?

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t} \ldots
$$

Why a parametric demand model?

$$
d_{t}=\theta_{1}+\theta_{2} p_{t}+\epsilon_{t} \ldots
$$

- Preferred by price managers
- By smartly choosing experimentation prices converging to the optimal price, you can hedge against misspecified linear demand.

Can't this log-term be removed?

$\operatorname{Regret}(T)=O(\sqrt{T \log T})$

- Convergence rates of LS estimators: not completely understood
- Does more data lead to better estimators?

Pricing airline tickets

- Sell $C \in \mathbb{N}$ perishable products during (consecutive) selling season of $S \in \mathbb{N}$ periods

Pricing airline tickets

- Sell $C \in \mathbb{N}$ perishable products during (consecutive) selling season of $S \in \mathbb{N}$ periods
- Demand in period t is Bernoulli $h\left(\beta_{0}+\beta_{1} p_{t}\right)$, unknown β_{0}, β_{1}.
- Goal of the firm: maximize total expected revenue.

Full-information solution

If demand distribution known: Markov decision problem.

Optimal prices $\pi_{\beta}^{*}(c, s) \in\left[p_{l}, p_{h}\right]$ for each pair (c, s) of remaining inventory $c \in\{0,1, \ldots, C\}$ and stage $s \in\{1, \ldots, S\}$.

Pricing airline tickets: incomplete information

Neglecting some technicalities, certainty-equivalent pricing performs well! I.e., if in period t state is $\left(c_{t}, s_{t}\right)$, use price $\pi_{\hat{\beta}_{t}}^{*}\left(c_{t}, s_{t}\right)$,

Pricing airline tickets: incomplete information

Neglecting some technicalities, certainty-equivalent pricing performs well! I.e., if in period t state is $\left(c_{t}, s_{t}\right)$, use price $\pi_{\hat{\beta}_{t}}^{*}\left(c_{t}, s_{t}\right)$,

Pricing airline tickets: endogenous learning

Reason for good performance: endogenous learning property

Pricing airline tickets: endogenous learning

Reason for good performance: endogenous learning property

- The optimal price $\pi_{\beta}^{*}(c, s)$ depends on marginal value of inventory
- This quantity changing throughout the selling season
- Thus, natural price dispersion if π_{β}^{*} is used

Pricing airline tickets: endogenous learning

Reason for good performance: endogenous learning property

- The optimal price $\pi_{\beta}^{*}(c, s)$ depends on marginal value of inventory
- This quantity changing throughout the selling season
- Thus, natural price dispersion if π_{β}^{*} is used
- By continuity arguments: price dispersion if $\hat{\beta}_{t}$ close to β, for all t in selling season

Pricing airline tickets: endogenous learning

Reason for good performance: endogenous learning property

- The optimal price $\pi_{\beta}^{*}(c, s)$ depends on marginal value of inventory
- This quantity changing throughout the selling season
- Thus, natural price dispersion if π_{β}^{*} is used
- By continuity arguments: price dispersion if $\hat{\beta}_{t}$ close to β, for all t in selling season

Endogenous learning causes fast converge of estimates:

$$
E\left[\left\|\hat{\beta}(t)-\beta^{(0)}\right\|^{2}\right]=O\left(\frac{\log (t)}{t}\right)
$$

