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@ A firm sells a product, with abundant inventory,
during T € N discrete time periods.

o Each periodt=1,..., T:
(i) choose selling price p;
(i) observe demand

dr = 01+ O2pr + €,

where 6 = (61, 62) are unknown parameters in known set ©,
€+ unobservable random disturbance term;
(iii) collect revenue p:d;.

@ Which non-anticipating prices p1, ..., pr maximize cumulative
expected revenue mingecg E Zthl ptdt} ?

Intractable problem
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Myopic pricing

An intuitive solution:
@ Choose arbitrary initial prices p1 # p>.

@ For each t > 2:
(i) determine LS estimate 6; of 6, based on available sales data;
(ii) set

Pr+1 = arg maxp - (étl + 9t2p) perceived optimal decision
p

@ ‘Always choose the perceived optimal action’.
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Does 6; converge to 0 as t — 007

No

It seems that 6, always converges, but w.p. zero to the true 6.
Open problem.

Caused by the prevalence of indeterminate equilibria:
Parameter estimates such that the true expected demand at the myopic
optimal price equals the predicted expected demand.
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Indeterminate equilibria

If § suff. close to 6, then arg max p - (01 + Oap) = —61 /(265).

p
Then:
‘ 1 7é\1
True' expected demand: 61 + 0;——. (1)
20,
N s A =0
Predicted’ expected demand: 601 + 6, 5, (2)
2

If (1) equals (2), then f is an IE.
Model output ‘confirms’ correctness of the (incorrect) estimates.



Indeterminate equilibria: example

Indeterminate Equilibria - Dynamic Pricing
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Back to original problem

Which non-anticipating prices ps, ..., pT maximize

mlnE[Zptdt]

or, equivalently, minimize the Regret(T)

E[T (6, + 0 d]
max maxp - (01 + 02p) Zptt

@ Exact solution intractable
@ Myopic pricing not optimal

o Let's find asymptotically optimal policies: smallest growth rate of
Regret(T) in T.
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Asymptotically optimal policy

Important observation: Variation in controls = better estimates.

A 2 log t
b = HH =0 <tVar(p1,...,pt)> s

Lai and Wei, Annals of Statistics, 1982.

To ensure convergence of 8¢, some amount of experimentation is necessary.
But, not too much.
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‘Controlled Variance pricing’

@ Choose arbitrary initial prices p; # po.
@ For each t > 2:
(i) determine LS estimate 6; of 6, based on available sales data;
(i) set
Prr1 = arg maxp - (étl + étgp) perceived optimal decision
p
s.t. t-Var(pi,...,pe+1) > f(t), ‘information constraint’

for some increasing f : N — (0, 00).

@ 'Always choose the perceived optimal action that induces sufficient
experimentation’.
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‘Controlled Variance pricing’ - performance

Regret(T) = O (f(T) + =, '),

f balances between exploration and exploitation.
Optimal f gives Regret(T) = O(y/Tlog T).

No policy beats v/T.

Thus, you can characterize asymptotically (near)-optimal amount of
experimentation.

(the optimal ‘constant’ is not yet known, in general).
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Extension: multiple products

K products: price vector p: = (p:(1), ..., p:(K)) ",

1 ) .
demand vector dy = @ p + €, matrix @, noise-vector €.
t

Convergence rates of LS-estimator:

0, — 0H2 =0 <)\:§é)> a.s.,

where Amin(t) is the smallest eigenvalue of the information matrix

t
> (5 Por )
Pi Pip;T

i=1
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Extension: multiple products

Same type of policy:

A 1 . : .
Pt+1 = arg max p' o, ( p > perceived optimal decision
p
s.t. Amin(t+1) > f(t), ‘information constraint’

for some increasing f : N — (0, 00).
Problem: Amin(t + 1) is a complicated object.

Convertible to non-convex but tractable quadratic constraint.

Regret(T) = O (F(T) + X1, %1 ).
optimal f gives Regret(T) = O(y/T log T).
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Many more extensions

@ Non-linear demand functions (generalized linear models)
E[D(p)] = h(61 + 62p);

@ Time-varying markets (how much data to use for inference?)

@ Strategic customer behavior (can you detect this from data?)

o Competition (repeated games with incomplete information? Mean
field games with learning?)

den Boer (2015) Surveys in Operations Research and Management Science 20(1)
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Why a parametric demand model?

dt:91+02pt+€t"-

@ Preferred by price managers

@ By smartly choosing experimentation prices converging to the optimal
price, you can hedge against misspecified linear demand.



Can't this log-term be removed?

Regret(T) = O(y/ T log T)

@ Convergence rates of LS estimators: not completely understood

@ Does more data lead to better estimators?
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Pricing airline tickets

@ Sell C € N perishable products during (consecutive) selling season of
S € N periods

e Demand in period t is Bernoulli h(3p + B1pt), unknown So, 5.

@ Goal of the firm: maximize total expected revenue.



Full-information solution

If demand distribution known: Markov decision problem.

C

Optimal prices FE(C,S) € [pi, pn] for each pair (¢, s) of remaining
inventory ¢ € {0,1,...,C} and stage s € {1,...,S}.
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Reason for good performance: endogenous learning property

The optimal price 75(c, s) depends on marginal value of inventory

This quantity changing throughout the selling season

Thus, natural price dispersion if 7 is used

@ By continuity arguments: price dispersion if Bt close to 3, for all t in
selling season

Endogenous learning causes fast converge of estimates:

e [[}a - 5] = o &)

t



