

THE PROBLEM

Select a set of website elements to display to a user.

- Adverts on search results.
- Movie suggestions.
- Recommendations on a retail site.

Shop for bikes on Google

Sponsored

B'twin Elops 100 Dutch ... £139.99 Decathlon UK

"Pendleton Somerby ... £249.99 Halfords

2016 Scott Plasma ... £9,699.00 Swift Cycles

"Apollo Claws Kids Bike - 14""" £59.99 Halfords

Figure 1: A diverse(!) set of adverts for Google search for "bikes".

The objective

Maximise current and future user clicks on the elements. Clicks are affected by:

- The quality of the element (initially unknown).
- The relevance of the element to the current user.

The Main Difficulty

Clicks depend on the set of elements not individual elements.

- The set is different from the sum of its parts.
- Combinatorial explosion in possible sets.
- So learn about individual elements but choose sets.

Diversity

Similar elements in the set creates *redundancy*.

- Consider a set of all action movies or books by one author.
- If one element is not clicked then a similar one is unlikely to be clicked either.
- A diverse set avoids this problem.

How can this be modelled? How diverse should the set be?

Selecting Multiple Website Elements

James Edwards, supervised by David Leslie STOR-i CDT, Lancaster University

MODELLING

The quality of each element must be learnt through observing user feedback (clicks). This is a bandit problem whose arms are the elements. The objective is to maximise expected click-through rate (CTR) over time.

Context and Uncertainty

The **context** is extra information specific to each time that affects the CTR e.g. user information (location, preferences) or search terms entered. This is rarely known exactly:

- A search term has multiple meanings e.g. jaguar or flash.
- A travel based search could be for business or a holiday.
- Movie preferences change when watching alone or with friends.

This is captured by using a probability distribution as context.

This uncertainty induces diversity in solution sets.

Click Models

At each time the user is summarised by a latent state $x \in \{1, 2, \ldots, n\}$. Only its distribution is known. Each arm a has n corresponding weights $w_{a,x} \in [0,1]$ representing its quality for state x.

For a single arm the CTR is $w_{a,x}$. For a set of arms A either one or none are clicked. Two possible models for set CTR are:

- Probabilistic Click Model (PCM). An independent $Bern(w_{a,x})$ trial is run for each arm. There is a click if any is a SUCCESS.
- Threshold Click Model (TCM). Each user has a threshold $u \sim U(0, 1)$. There is a click if $\exists a \in A$ such that $w_{a,x} > u$.

The set CTR is then:

$$Pr(Click) = \begin{cases} 1 - \prod_{a \in A} (1 - w_{a,x}) \\ \int_{u=0}^{1} 1 - \prod_{a \in A} (1 - 1_{w_a}) \\ \int_{u=0}^{1} 1 - \prod_{a \in A} (1 - 1_{w_a}) \end{cases}$$

Comparison. PCM is simpler but TCM induces greater diversity. With two identical arms the second arm increases CTR under PCM but not under TCM. This suggests PCM undervalues diversity.

for PCM

 $_{u} = u du$ for TCM.

SOLUTION METHOD

The solution method takes three parts:

- sufficient observations (updating beliefs).
- An algorithm that chooses a good arm set when weights are known (exploitation).
- short term rewards (exploration).

Updating Beliefs

The unobserved state x makes exact updating impractical. A form of online expectation maximisation can be used:

- 2. Sample an \tilde{x} from X.
- 3. Update weight beliefs assuming $x = \tilde{x}$.

Exploitation

The CTR for both PCM and TCM is submodular. For these problems a greedy algorithm is known to perform well. Arms are added sequentially, choosing at each step the arm that maximises the increase in expected CTR.

Exploration

The true weights are not known so instead a proxy \tilde{w} is used. This is usually some function of the weight beliefs and can be implemented easily by adapting an existing bandit index policy e.g. Thompson Sampling, UCB.

Acknowledgements

This work was funded by the Google Faculty Research Award.

• A Bayesian scheme that converges to the true weights with

• A bandit algorithm that learns the weights without neglecting

1. Obtain X, the posterior distribution for x given user action.

