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Presentation of the model

The problem

Power system
security
assessment

By Mark MacAlester, Federal Emergency Management Agency [Public
domain], via Wikimedia Commons

Identifying contingencies/scenarios that could lead to
unacceptable operating conditions (dangerous contingencies) if no
preventive actions were taken.



Presentation of the model

The model

Subset A ⊂ X of
important items

|X | � 1, |A| � |X |
Access to X only
by probabilistic
experts (Pi)1≤i≤K :
sequential
independent draws

Goal : discover rapidly the elements of A
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Presentation of the model

Goal

At each time step t = 1, 2, . . . :

pick an index It = πt
(
I1, Y1, . . . , Is−1, Ys−1

)
∈ {1, . . . ,K}

according to past observations

observe Yt = XIt,nIt,t
∼ PIt , where

ni,t =
∑
s≤t

1{Is = i}

Goal : design the strategy π = (πt)t so as to maximize the number
of important items found after t requests

F π(t) =
∣∣∣A ∩ {Y1, . . . , Yt

}∣∣∣
Assumption : non-intersecting supports

A ∩ supp(Pi) ∩ supp(Pj) = ∅ for i 6= j



Presentation of the model

Is it a Bandit Problem ?

It looks like a bandit problem. . .

sequential choices among K options

want to maximize cumulative rewards

exploration vs exploitation dilemma

. . . but it is not a bandit problem !

rewards are not i.i.d.

destructive rewards : no interest to observe twice the same
important item

all strategies eventually equivalent



Presentation of the model

The oracle strategy

Proposition : Under the non-intersecting support hypothesis, the
greedy oracle strategy

I∗t ∈ arg max
1≤i≤K

Pi (A \ {Y1, . . . , Yt})

is optimal : for every possible strategy π, E
[
F π(t)

]
≤ E

[
F ∗(t)

]
.

Remark : the proposition if false if the supports may intersect

=⇒ estimate the “missing mass of important items” !
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The Good-UCB algorithm

Missing mass estimation

Let us first focus on one expert i : P = Pi, Xn = Xi,n

X1, . . . , Xn independent draws of P

On(x) =

n∑
m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen important items

Rn =
∑
x∈A

P (x)1{On(x) = 0} ?



The Good-UCB algorithm

The Good-Turing Estimator

Idea : use the hapaxes = items seen only once (linguistic)

R̂n =
Un
n
, where Un =

∑
x∈A

1{On(x) = 1}

Lemma [Good ’53] : For every distribution P ,

0 ≤ E
[
R̂n
]
− E

[
Rn
]
≤ 1

n

Proposition : With probability at least 1− δ for every P ,

R̂n −
1

n
− (1 +

√
2)

√
log(4/δ)

n
≤ Rn ≤ R̂n + (1 +

√
2)

√
log(4/δ)

n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03] :

deviations of R̂n : McDiarmid’s inequality

deviations of Rn : negative association



The Good-UCB algorithm

The Good-UCB algorithm

Estimator of the missing important mass for expert i :

R̂i,ni,t−1 =
1

ni,t−1

∑
x∈A

1

{ ni,t−1∑
s=1

1{Xi,s = x} = 1

and
K∑
j=1

nj,t−1∑
s=1

1{Xj,s = x} = 1

}

Good-UCB algorithm :

1: For 1 ≤ t ≤ K choose It = t.
2: for t ≥ K + 1 do

3: Choose It = arg max1≤i≤K

{
R̂i,ni,t−1 + C

√
log (4t)
ni,t−1

}
4: Observe Yt distributed as PIt
5: Update the missing mass estimates accordingly
6: end for
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Optimality results

Classical analysis

Theorem : For any t ≥ 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 +

√
2)
√

3) satisfies

E
[
F ∗(t)− FUCB(t)

]
≤ 17

√
Kt log(t)+20

√
Kt+K+K log(t/K)

Remark : Usual result for bandit problem, but not-so-simple
analysis



Optimality results

Sketch of proof

1 On a set Ω̃ of probability at least 1−
√

K
t , the “confidence

intervals” hold true simultaneously all u ≥
√
Kt

2 Let Īu = arg max1≤i≤K Ri,ni,u−1 . On Ω̃,

RIu,nIu,u−1
≥ RĪu,nĪu,u−1

− 1

nIu,u−1
− 2(1 +

√
2)

√
3 log(4u)

nIu,u−1

3 But one shows that EF ∗(t) ≤
∑t

u=1 ERĪu,nπĪu,u−1

4 Thus

E
[
F ∗(t)− FUCB(t)

]
≤
√
Kt+ E

[
t∑

u=1

1

nIu,u−1
+ 2(1 +

√
2)

√
3 log(4t)

nIu,u−1

]
≤
√
Kt+K +K log(t/K) + 4(1 +

√
2)
√

3Kt log(4t)



Optimality results

Experiment : restoring property

Figure – green : oracle, blue : Good-UCB, red : uniform sampling



Optimality results

Another analysis of Good-UCB

For λ ∈ (0, 1), T (λ) = time at which missing mass of important
items is smaller than λ on all experts :

T (λ) = inf

{
t : ∀i ∈ {1, . . . ,K}, Pi(A \ {Y1, . . . , Yt}) ≤ λ

}
Theorem : Let c > 0 and S ≥ 1. Under the non-intersecting
support assumption, for Good-UCB with C = (1 +

√
2)
√
c+ 2,

with probability at least 1− K
cSc , for any λ ∈ (0, 1),

TUCB(λ) ≤ T ∗ +KS log (8T ∗ + 16KS log(KS)) ,

where T ∗ = T ∗

(
λ− 3

S
− 2(1 +

√
2)

√
c+ 2

S

)



Optimality results

The macroscopic limit

Restricted framework : Pi = U{1, . . . , N}
N →∞
|A ∩ supp(Pi)|/N → qi ∈ (0, 1), q =

∑
i qi
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Optimality results

The Oracle behaviour

The limiting discovery process of the Oracle strategy is
deterministic

Proposition : For every λ ∈ (0, q1), for every sequence (λN )N
converging to λ as N goes to infinity, almost surely

lim
N→∞

TN∗ (λN )

N
=
∑
i

(
log

qi
λ

)
+



Optimality results

Oracle vs. uniform sampling

Oracle : The proportion of important items not found after
Nt draws tends to

q−F ∗(t) = I(t)q
I(t)

exp (−t/I(t)) ≤ Kq
K

exp(−t/K)

with q
K

=
(∏K

i=1 qi

)1/K
the geometric mean of the

(qi)i.

Uniform : The proportion of important items not found after
Nt draws tends to Kq̄K exp(−t/K)

=⇒ Asymptotic ratio of efficiency

ρ(q) =
q̄K
q
K

=
1
K

∑k
i=1 qi(∏k

i=1 qi

)1/K
≥ 1

larger if the (qi)i are unbalanced



Optimality results

Macroscopic optimality

Theorem : Take C = (1 +
√

2)
√
c+ 2 with c > 3/2 in the

Good-UCB algorithm.

For every sequence (λN )N converging to λ as N goes to
infinity, almost surely

lim sup
N→+∞

TNUCB(λN )

N
≤
∑
i

(
log

qi
λ

)
+

The proportion of items found after Nt steps FGUCB

converges uniformly to F ∗ as N goes to infinity



Optimality results

Experiment
Number of items found by Good-UCB (solid), the OCL (dashed),
and uniform sampling (dotted) as a function of time for sizes
N = 128, N = 500, N = 1000 and N = 10000 in a 7-experts
setting.



Optimality results

Conclusion and perspectives

We propose an algorithm for the optimal discovery with
probabilistic expert advice

We give a standard regret analysis under the only assumption
that the supports of the experts are non-overlapping

We propose a different optimality result, which permits a
macroscopic analysis in the uniform case

Another interesting limit to consider is when the number of
important items to find is fixed, but the total number of items
tends to infinity (Poisson regime)

Then, the behavior of the algorithm is not very good : too
large confidence bonus because no tight deviations bounds for
the Good-Turing estimator when the proportion of important
items tends to 0
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