Optimal Discovery with Probabilistic Expert Advice [JMLR - arXiv:1110.5447]

Sébastien Bubeck, Damien Ernst and Aurélien Garivier

January 12th, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

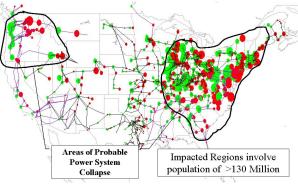
Outline

2 The Good-UCB algorithm

3 Optimality results

The problem

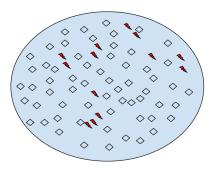
Power system security assessment



By Mark MacAlester, Federal Emergency Management Agency [Public domain], via Wikimedia Commons

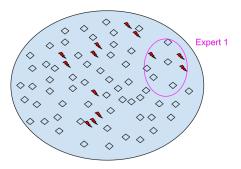
Identifying contingencies/scenarios that could lead to unacceptable operating conditions (dangerous contingencies) if no preventive actions were taken.

- Subset *A* ⊂ *X* of important items
- Access to \mathcal{X} only by probabilistic experts $(P_i)_{1 \le i \le K}$: sequential independent draws



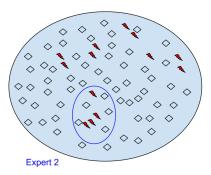
・ロット (雪) (日) (日) 日

- Subset *A* ⊂ *X* of important items
- Access to \mathcal{X} only by probabilistic experts $(P_i)_{1 \le i \le K}$: sequential independent draws



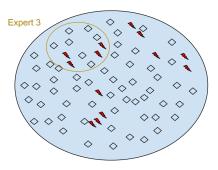
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ○ ○ ○

- Subset *A* ⊂ *X* of important items
- $|\mathcal{X}| \gg 1$, $|A| \ll |\mathcal{X}|$
- Access to \mathcal{X} only by probabilistic experts $(P_i)_{1 \le i \le K}$: sequential independent draws



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ○ ○ ○

- Subset *A* ⊂ *X* of important items
- $|\mathcal{X}| \gg 1$, $|A| \ll |\mathcal{X}|$
- Access to \mathcal{X} only by probabilistic experts $(P_i)_{1 \le i \le K}$: sequential independent draws



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ○ ○ ○

Goal

At each time step $t = 1, 2, \ldots$:

- pick an index $I_t = \pi_t (I_1, Y_1, \dots, I_{s-1}, Y_{s-1}) \in \{1, \dots, K\}$ according to past observations
- \blacksquare observe $Y_t = X_{I_t, n_{I_t, t}} \sim P_{I_t}$, where

$$n_{i,t} = \sum_{s \le t} \mathbb{1}\{I_s = i\}$$

Goal : design the strategy $\pi = (\pi_t)_t$ so as to maximize the number of important items found after t requests

$$F^{\pi}(t) = \left| A \cap \left\{ Y_1, \dots, Y_t \right\} \right|$$

Assumption : non-intersecting supports

 $A \cap \operatorname{supp}(P_i) \cap \operatorname{supp}(P_j) = \emptyset$ for $i \neq j$

・ロト・西ト・西ト・西ト・日・

Is it a Bandit Problem?

It looks like a bandit problem...

- sequential choices among K options
- want to maximize cumulative rewards
- exploration vs exploitation dilemma

... but it is not a bandit problem !

- rewards are not i.i.d.
- destructive rewards : no interest to observe twice the same important item

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ○ ○ ○

all strategies eventually equivalent

The oracle strategy

Proposition : Under the non-intersecting support hypothesis, the greedy oracle strategy

$$I_t^* \in \underset{1 \le i \le K}{\arg \max} P_i \left(A \setminus \{Y_1, \dots, Y_t\} \right)$$

is optimal : for every possible strategy π , $\mathbb{E}[F^{\pi}(t)] \leq \mathbb{E}[F^{*}(t)]$.

Remark : the proposition if false if the supports may intersect

 \implies estimate the "missing mass of important items" !

Outline

1 Presentation of the model

2 The Good-UCB algorithm

3 Optimality results

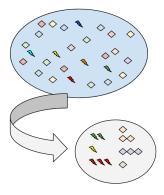
・ロト (個) (主) (主) (三) のへで

Missing mass estimation

Let us first focus on one expert $i: P = P_i, X_n = X_{i,n}$

 X_1, \ldots, X_n independent draws of P

$$O_n(x) = \sum_{m=1}^n \mathbb{1}\{X_m = x\}$$



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ○ ○ ○

How to 'estimate' the total mass of the unseen important items

$$R_n = \sum_{x \in A} P(x) \mathbb{1}\{O_n(x) = 0\}$$
?

The Good-Turing Estimator

Idea : use the **hapaxes** = items seen only once (linguistic)

$$\hat{R}_n = rac{U_n}{n}, \quad ext{where } U_n = \sum_{x \in A} \mathbbm{1}\{O_n(x) = 1\}$$

Lemma [Good '53] : For every distribution P,

$$0 \le \mathbb{E}[\hat{R}_n] - \mathbb{E}[R_n] \le \frac{1}{n}$$

Proposition : With probability at least $1 - \delta$ for every P,

$$\hat{R}_n - \frac{1}{n} - (1 + \sqrt{2})\sqrt{\frac{\log(4/\delta)}{n}} \le R_n \le \hat{R}_n + (1 + \sqrt{2})\sqrt{\frac{\log(4/\delta)}{n}}$$

See [McAllester and Schapire '00, McAllester and Ortiz '03] :

- deviations of \hat{R}_n : McDiarmid's inequality
- deviations of R_n : negative association

The Good-UCB algorithm

Estimator of the missing important mass for expert i:

$$\begin{split} \hat{R}_{i,n_{i,t-1}} &= \frac{1}{n_{i,t-1}} \sum_{x \in A} \mathbb{1} \left\{ \sum_{s=1}^{n_{i,t-1}} \mathbb{1} \{ X_{i,s} = x \} = 1 \\ & \text{and} \ \sum_{j=1}^{K} \sum_{s=1}^{n_{j,t-1}} \mathbb{1} \{ X_{j,s} = x \} = 1 \right\} \end{split}$$

Good-UCB algorithm :

- 1: For $1 \leq t \leq K$ choose $I_t = t$.
- 2: for $t \ge K+1$ do

3: Choose
$$I_t = \arg \max_{1 \le i \le K} \left\{ \hat{R}_{i,n_{i,t-1}} + C \sqrt{\frac{\log(4t)}{n_{i,t-1}}} \right\}$$

- 4: Observe Y_t distributed as P_{I_t}
- 5: Update the missing mass estimates accordingly
- 6: end for

Outline

1 Presentation of the model

2 The Good-UCB algorithm

3 Optimality results

Classical analysis

Theorem : For any $t \ge 1$, under the non-intersecting support assumption, Good-UCB (with constant $C = (1 + \sqrt{2})\sqrt{3}$) satisfies

$$\mathbb{E}\left[F^*(t) - F^{UCB}(t)\right] \le 17\sqrt{Kt\log(t)} + 20\sqrt{Kt} + K + K\log(t/K)$$

Remark : Usual result for bandit problem, but not-so-simple analysis

Sketch of proof

On a set Ω of probability at least 1 − √^K/_t, the "confidence intervals" hold true simultaneously all u ≥ √Kt
 Let I_u = arg max_{1≤i≤K} R_{i,n_{i,u-1}}. On Ω,

$$R_{I_u,n_{I_u,u-1}} \ge R_{\bar{I}_u,n_{\bar{I}_u,u-1}} - \frac{1}{n_{I_u,u-1}} - 2(1+\sqrt{2})\sqrt{\frac{3\log(4u)}{n_{I_u,u-1}}}$$

3 But one shows that $\mathbb{E}F^*(t) \leq \sum_{u=1}^t \mathbb{E}R_{\bar{I}_u, n_{\bar{I}_u, u-1}}$ 4 Thus

$$\mathbb{E}\left[F^*(t) - F^{UCB}(t)\right]$$

$$\leq \sqrt{Kt} + \mathbb{E}\left[\sum_{u=1}^t \frac{1}{n_{I_u,u-1}} + 2(1+\sqrt{2})\sqrt{\frac{3\log(4t)}{n_{I_u,u-1}}}\right]$$

$$\leq \sqrt{Kt} + K + K\log(t/K) + 4(1+\sqrt{2})\sqrt{3Kt\log(4t)}$$

Experiment : restoring property

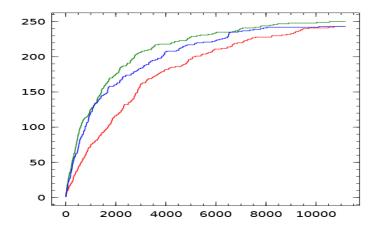


FIGURE - green : oracle, blue : Good-UCB, red : uniform sampling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Another analysis of Good-UCB

For $\lambda \in (0, 1)$, $T(\lambda) =$ time at which missing mass of important items is smaller than λ on all experts :

$$T(\lambda) = \inf\left\{t : \forall i \in \{1, \dots, K\}, P_i(A \setminus \{Y_1, \dots, Y_t\}) \le \lambda\right\}$$

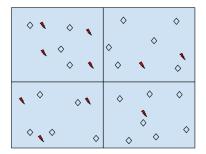
Theorem : Let c > 0 and $S \ge 1$. Under the non-intersecting support assumption, for Good-UCB with $C = (1 + \sqrt{2})\sqrt{c+2}$, with probability at least $1 - \frac{K}{cS^c}$, for any $\lambda \in (0, 1)$,

$$\begin{split} T_{UCB}(\lambda) &\leq T^* + KS \log\left(8T^* + 16KS \log(KS)\right), \\ \text{where} \quad T^* &= T^* \left(\lambda - \frac{3}{S} - 2(1 + \sqrt{2})\sqrt{\frac{c+2}{S}}\right) \end{split}$$

The macroscopic limit

- Restricted framework : $P_i = \mathcal{U}\{1, \dots, N\}$
- $\blacksquare N \to \infty$

$$\blacksquare |A \cap \operatorname{supp}(P_i)| / N \to q_i \in (0,1), \ q = \sum_i q_i$$

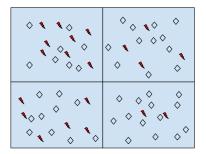


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

The macroscopic limit

- Restricted framework : $P_i = \mathcal{U}\{1, \dots, N\}$
- $\blacksquare N \to \infty$

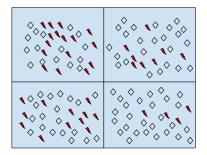
$$\blacksquare |A \cap \operatorname{supp}(P_i)| / N \to q_i \in (0,1), \ q = \sum_i q_i$$



The macroscopic limit

- Restricted framework : $P_i = \mathcal{U}\{1, \dots, N\}$
- $\blacksquare N \to \infty$

$$\blacksquare |A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$$



The Oracle behaviour

The limiting discovery process of the Oracle strategy is *deterministic*

Proposition : For every $\lambda \in (0, q_1)$, for every sequence $(\lambda^N)_N$ converging to λ as N goes to infinity, almost surely

$$\lim_{N \to \infty} \frac{T^N_*(\lambda^N)}{N} = \sum_i \left(\log \frac{q_i}{\lambda} \right)_+$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Oracle vs. uniform sampling

Oracle : The proportion of important items not found after Nt draws tends to

$$q - F^*(t) = I(t)\underline{q}_{I(t)} \exp\left(-t/I(t)\right) \le K\underline{q}_K \exp\left(-t/K\right)$$

with $\underline{q}_{K} = \left(\prod_{i=1}^{K} q_{i}\right)^{1/K}$ the geometric mean of the $(q_{i})_{i}$.

Uniform : The proportion of important items not found after Nt draws tends to $K\bar{q}_K\exp(-t/K)$

 \implies Asymptotic ratio of efficiency

$$\rho(q) = \frac{\bar{q}_K}{\underline{q}_K} = \frac{\frac{1}{K} \sum_{i=1}^k q_i}{\left(\prod_{i=1}^k q_i\right)^{1/K}} \ge 1$$

larger if the $(q_i)_i$ are unbalanced

Macroscopic optimality

Theorem : Take $C=(1+\sqrt{2})\sqrt{c+2}$ with c>3/2 in the Good-UCB algorithm.

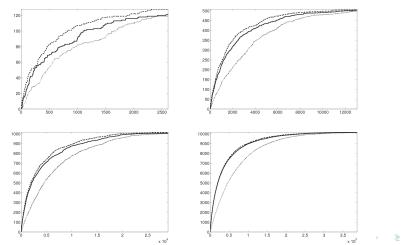
For every sequence $(\lambda^N)_N$ converging to λ as N goes to infinity, almost surely

$$\limsup_{N \to +\infty} \frac{T_{UCB}^{N}(\lambda^{N})}{N} \le \sum_{i} \left(\log \frac{q_{i}}{\lambda}\right)_{+}$$

The proportion of items found after Nt steps F^{GUCB} converges uniformly to F* as N goes to infinity

Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and uniform sampling (dotted) as a function of time for sizes N = 128, N = 500, N = 1000 and N = 10000 in a 7-experts setting.



Conclusion and perspectives

- We propose an algorithm for the optimal discovery with probabilistic expert advice
- We give a standard regret analysis under the only assumption that the supports of the experts are non-overlapping
- We propose a different optimality result, which permits a macroscopic analysis in the uniform case
- Another interesting limit to consider is when the number of important items to find is fixed, but the total number of items tends to infinity (Poisson regime)
- Then, the behavior of the algorithm is not very good : too large confidence bonus because no tight deviations bounds for the Good-Turing estimator when the proportion of important items tends to 0