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Introduction

Focus of Study
Models and methods for the dynamic allocation of a single key resource
among a collection of stochastic projects which are competing for it.

Goal of Study
Explore extensions to the index policies of Gittins (1979) and Whittle
(1988) which have proved so successful in very simple bandit problems.

Central Ideas
Development of appropriate measures of the cost effectiveness of
allocating resource at a given level to a project in a given state.
Development of heuristic policies for resource allocation using such
measures.

Methodology
Follow Whittle (1988) in achieving a project-based decomposition of the
problem via the development of a Lagrangian relaxation.



Introduction (2)
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• Projects evolve over time under the action of the key resource,
earning returns (or incurring costs) as they go.

• Decision-maker reviews the distribution of the resource whenever a
project changes state.

• Inventory Management; Queueing Control; Asset Management;
Machine Maintenance; Military Logistics.



A Model for Dynamic Resource Allocation

• K stochastic reward generating/cost incurring projects are driven by
the application of some divisible resource.

• At each decision epoch (state transition) an action
a = (a1, a2, . . . , aK ) is applied to the system.

• Admissible actions:

A =
[

a; ak ∈ {0, 1, . . . ,R}, 1 ≤ k ≤ K , and
∑K

k=1 ak ≤ R
]

.

• System state: x = (x1, x2, . . . , xK ) ∈ N
K .

• Project k :

{

Reward rate earned, dk(xk),
Transition rates, qk (x

′
k |ak , xk)

• Want a policy for resource allocation to maximise the average return
per unit time from all projects.



Key Steps to Index Policies (1)
Optimisation Goal:

Dopt = max
u

K
∑

k=1

Dk(u) (admissible policies)

↓

Lagrangian Relaxation (LR):

D(W ) = max
u

K
∑

k=1

{Dk(u)−WRk(u)}+WR

(constraint
∑

ak ≤ R abandoned)

D(W ) ≥ Dopt , W ∈ R
+

↓

Projectwise Decomposition:

D(W ) =

K
∑

k=1

Dk(W ) +WR , where

Dk(W ) = max
uk

{Dk(uk)−WRk(uk)} (problem P(k ,W ))



Key Steps to Index Policies (2)

(Full) Indexability:
Project k is fully indexable if there exist stationary policies
{uk(W );W ∈ R

+} such that

(a) uk(W ) is optimal for P(k ,W ), and

(b) uk(xk ,W ) is decreasing in W ∀ xk
↓

Indicies:
If project k is fully indexable, define indices

Wk(ak , xk) = inf{W ; uk(xk ,W ) ≤ ak} (index as fair charge)

↓

Index Solution to LR:
If all K projects are fully indexable the above Lagrangian Relaxation is
solved by the policy u(W ) such that ∀ x

u(W , x) = a ⇐⇒ Wk(ak − 1, xk) > W ≥ Wk(ak , xk), ∀ k .

In words: accumulate resource at each project until the fair charge for
adding further resource falls below the prevailing charge W .



Key Steps to Index Policies (3)

Index heuristic for the original problem:
Increase resource levels at the projects in decreasing order of the
appropriate indicies/fair charges until the resource constraint is violated.

Example:
Let K = 2, x = (5, 2)

0 W1(4, 5) W1(3, 5)W1(2, 5) W1(1, 5) W1(0, 5)

W2(4, 2) W2(3, 2) W2(2, 2) W2(1, 2)W2(0, 2)

W

0

∗ ∗

∗ ∗ ∗

Optimal action for Lagrangian Relaxation: (a1, a2) = (2, 4).

If R = 5, greedy index heuristic ∗ chooses (a1, a2) = (2, 3).



Asymptotically Optimal Performance

An asymptotic framework:
n fully indexable bandits, total resource constraint nαR for α ∈ (0, 1)
(scaling with n, as n → ∞)

Index solution to LR is still optimal.

Asymptotic result:
Under mild irreducibility conditions, and good behaviour of solutions to a
deterministic fluid-limit differential equation. Index heuristic for the
original problem yields asymptotically optimal reward per bandit – the
same reward per bandit as the index solution to the LR.

Small state bandits:
In the case of two- and three-state bandits the differential equation is
well behaved.



A Queueing Control Example

• A team of R servers provides service at K stations. Station k has
finite waiting room of size Bk . Completed services at station k earn
a return dk .

• How to dynamically allocate the R servers among the stations to
maximise the aggregate return rate?

• Dynamics at station k with ak servers:

0 xk − 1 xk xk + 1 Bk

µk(ak) λk

Service rate µk(ak) is strictly increasing and strictly concave in ak .

Reward rate: dk(xk) = dkλk I (xk < Bk)

• Station k is fully indexable.



Numerical Results

Analysis of problems with K = 2, R = 25, d1 = d2 = 1,

µk(ak) = akµk(ak + νk)
−1, k = 1, 2

and a range of choices for λ1, λ2, µ1, µ2, ν1, ν2, B1, B2.

MIN LQ MED UQ MAX N
Greedy
Index

0.0023 0.0148 0.0235 0.0336 0.1199 5250

Optimum
Static

17.9544 23.4628 25.4526 27.4720 33.8567 5250

Percentage reward rate deficit compared to optimum



A Model for Asset Management (“Spinning Plates”)

• Resource is available at rate R to support the performance of K
reward generating assets. In the absence of investment, the
reward-earning capability of an asset deteriorates.

• Dynamics of asset k under resource level ak :

0 xk − 1 xk xk + 1 Bk

µk(ak , xk) λk(ak , xk)

Enhancement rate λk(ak , xk) is strictly increasing and strictly
concave in ak ∀ xk .

Deterioration rate µk(ak , xk) is strictly decreasing and strictly convex
in ak ∀ xk .

Return rate dk(xk) is increasing in xk .

• Asset k is fully indexable.



Numerical Results

Analysis of 2,000 problems with

K = 2, R = 5, B1 = B2 = 10, dk(xk) = xk(xk + 1)−1, k = 1, 2

λ(ak , xk) = ak(ak + φk)
−1,

µk(ak , xk) = φk(ak + φk)
−1ηk , k = 1, 2

and a range of choices for φ1, φ2, η1, η2.

MIN LQ MED UQ MAX
Index 0.0000 0.1482 0.6752 1.0751 1.9082
Static 0.0719 3.7812 6.1724 7.4822 13.6966
Myopic 0.0027 4.7774 16.7270 26.5042 39.3193

Percentage return rate deficit compared to optimum



What happens when indexability fails to hold?
A Multi-Product Make-to-Stock Production System

• A resource, available at R , drives the manufacture of K products
which are made to stock to meet exogenous demand.

• How to dynamically allocate the resource among the K products to
minimise an aggregate of costs from lost sales, backorders and
holding inventory?

• Dynamics for product k with resource level ak :

−Mk xk − 1 xk xk + 1 Nk

µk λk(ak) Stock Level

Production rate λk(ak) is strictly increasing and strictly concave in ak .
Cost rate

ck(xk) = hkx
+
k + bkx

−
k + lkµk I (xk = −Mk).

(holding) (backorder) (lost sales)

Typically hk ≪ bk ≪ lkµk .



• There exists ĥk such that product k is fully indexable when
hk ≤ ĥk . Practical indexability.

Problem set Policies
Index Static OSPI Myopic

Med Max Med Max Med Max Med Max

Recip A 0.004 0.859 0.870 42.955 0.047 3.943 72.292 558.735
Recip B 0.239 4.055 25.513 122.785 2.311 11.536 347.324 >2000
Recip C 1.262 11.327 94.945 284.436 7.376 22.091 >2000 >20000

Power A 0 0.025 0.013 1.528 0 0.458 14.897 43.987
Power B 0.001 0.163 0.149 14.712 0.029 4.892 25.192 103.310
Power C 0.049 7.603 3.141 347.921 0.999 48.271 50.768 >2000

Log D 0.230 5.458 8.776 164.421 2.902 43.489 75.289 1181.374

Median and maximum percentage suboptimalities of five heuristic policies
for three forms of production rate. There are 900 problems summarised

in each row of the table.



Example
K = 2, R = 25. Both products have
M = N = 10, h = 0.025, b = 1.5, l = 200.

Product 1: µ1 = 1.576, λ1(a) = 4.5a(a + 5.971)−1, is not fully
indexable. We have

u1(9,W ) =







0, W ≤ 0.056,
1, W = 100,
0, W ≥ 200

=⇒

two natural values of
fair charge W̃1(0, 9)

(0.056,140)

Product 2: µ2 = 1.046, λ2(a) = 1.5a(a + 5.971)−1 is fully indexable.

Two natural candidate index heuristics:

H1 always uses the higher fair charge index

H2 always uses the lower fair charge index

C opt = 4.333;

CH1 = 4.370 (0.86% suboptimal); CH2 = 4.926 (13.70% suboptimal).

If µ2 is significantly reduced, H2 outperforms H1.



• Fix k , xk and consider uk(xk ,W ) as W : ∞ ց 0.

Either: uk(xk ,W ) : 0 ր R as W : ∞ ց 0. All Wk(ak , xk) well defined.

Or: uk(xk ,W ) : 0 ր r ց 0 as W : ∞ ց 0. Wk(ak , xk) = 0, ak ≥ r (idling)

and two natural values of the fair charges W̃k(ak , xk), ak < r .

• Define H1, H2 as on previous slide

• Write C (W ) for the value of the Lagrangian Relaxation.

C∗ = min
W≥0

C (W ) = C (W ∗), say, with u(W ∗) the corresponding policy.

C∗ is an easily computed lower bound for C opt .
W ∗ is a measure of the underlying value placed on resource by the
system.

• Key question: Which of H1, H2 is “closer to” u(W ∗)?



Dataset E Dataset F
% Policies

subopt. H2’ OSPI H1 Static H2’ OSPI H1 Static

Min 0.034 0.108 6.425 26.491 0.001 0.016 123.708 269.711
LQ 0.557 2.583 45.938 103.908 0.057 7.276 155.009 333.037

Median 1.155 5.737 61.183 135.974 0.470 27.429 172.520 359.905
UQ 2.149 11.560 76.132 168.242 1.259 54.766 189.450 387.342
Max 8.887 54.747 134.928 279.051 4.672 257.294 282.338 496.718

Percentage suboptimalities of H ′
2(1/70), OSPI, H1, and STAT, in a high

h scenario. There are 900 problems for each dataset.


