Online Learning with Gaussian Payoffs and Side

Observations

Yifan Wu!  Andras Gyorgy?> Csaba Szepesvaril

IDepartment of Computing Science

University of Alberta

’Department of Electrical and Electronic Engineering

Imperial College London

January 12, 2016
Stor-i Multi-armed Bandit Workshop

21



A Fishy Problem

Each day, you get to choose a fishing spot.

@ Which one to choose?

Every fish you catch: +1 cookies.
@ No fish: —10 cookies.

Fish distribution is i.i.d.

With some probability, you will see neighborin

g sites’ yield for the day.
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The Fishing Game
Choosing a fishing spot: K actions.

01,...,0k: (unknown) mean rewards for the K spots.
Forroundst=1,..., T:

@ Choose a fishing spot I; € [K] :=={1,...,K};
@ Incur reward Y; € R with mean 6,,;
@ Observe X; € RK: noisy reward observations for all the sites

(Yt = Xt,’t)'

Assumptions
E[X¢ k] = 0k, and V(X «|l¢) = 0,2“,( with ¥ = (a%k) known a priori.

Goal
. T
Minimize expected regret Rt = T max;ek) 0i — > ;—1 E[Yz].




Some Interesting Special Cases
e Full information problems: oj; = o for all i,/ € [K].

e Bandits: oj; = o for all i € [K], 0jj = oo for all i # j.
@ Graph feedback (Alon et al., 2015):

» Each i€ [K] has S; C [K]:

o, if j€5;;
O','yj:

400, otherwise.

» Self-observability: i € S; for any i € [K] (Mannor & Shamir, 2011;
Caron et al., 2012; Alon et al., 2013; Buccapatnam et al., 2014; Kocak
et al., 2014).

Strength: Our single model encompasses all these settings

and allows continuous interpolation between them.



How to Compare Algorithms?

Performance Metric

Expected regret Rt = T max;c(x] 0;

- 2L EY] J

Minimax Regret:
RT = infsup R7(A,6)
A 9

Typically, R} = O(T®) with

0 < a < 1 (polynomial minimax
regret), where the constant is a
function of (p, r), ©, but not the
individual 6.

Regret Asymptotics:
As = set of algorithms with
subpolynomial regret growth, i.e., for

any Aec As, a >0,
RT(A,0) = O(T®).

Problem-dependent sharp asymptotic

regret lower bound: For any 0 € ©,

.. _Rr(A0)
At i inf ey — <)



A Unified Lower Bound

Under our setting with general variance matrix X, we have a unified,
finite-time, problem-dependent lower bound that recovers

all of the existing results.
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Lower Bound for Gaussian Case

Idea: Only allow algorithms with bounded worst-case regret over O!
Given some B > 0, for i # i1, let A; = max;0; — 0;, 1
1 T(ei — A
€ = 8f 16\”3 + A, m;(0, B):2|0g(6’88')-
€

For i = i1, replace A; with A;,. Let

K
Cop=1{ceCl Z% > mi(0, B) for all i € [K]
j=1
Theorem (Finite-time problem-dependent lower bound)
For any algorithm s.t. supycg RT(A\) < B, any T large enough, any 6 € ©,
R7(0) > b(0,B) = min Zc,

CEC@ B

i#i

LW(.) is the Lambert W function satisfying W (x)e"V*™) = x.



Asymptotic Lower Bound for Graph Feedback
Derived from the work of Graves & Lai (1997):
o Let Aj = Aj(0); 0ij € {o,+00}. Assumption: optimal action is

unique; let i1, ip be the index of the best, resp., second best action.

Theorem (Asymptotic lower bound)

For any algorithm A € As, and for any 6 € O,

Rt
Iiminf(7> inf Zc, Ay

T—o0 IO ce Cg
where

2 2
Co = cE[O,oo Zc,_ forallj#ll, and Z c,_A;‘2

iijeS; it ES; 2




Recovering the Asymptotic Lower Bound

Corollary (Finite-time problem-dependent lower bound)
For any algorithm such that supycg RT(\) < B, we have, for any 6 € ©,

R7(6) > b(0,B) = min Zc, o (*)

ceC
931;&1

@ Recall asymptotic lower bound:

R+(6
liminf r(0) > inf ZC,'A,'- (**)

T—oo log T ceCy ”

e Forany B = aT# with a >0 and € (0,1) we have

1-p8)log T
Cop — ( 62) og
as T — oo. Hence, (**) is recovered from (*).
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Minimax Lower Bounds (Alon et al., 2015)

Each i € [K] is associated with an observation set S; C [K]: for j € S,
oj=o;forj¢ S, oj = oo.
@ Assume X is always observable: for all i, there exists j such that
i€S;.
@ 2 is strongly observable if all actions are strongly observable.

» An action i is strongly observable if either it is self-observable or is
observable under any other action. Otherwise, the action is said to be

weakly observable.

@ X is weakly observable if it is observable but not strongly observable.
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Minimax Lower Bounds for Graph Feedback - Strong Observability

@ JjjE {1,+OO}, o= [0, 1]; Si = {j DO = U}.
e A set A C [K] is independent in X if for any i € A, SN A C {i}.
» Choosing i € A gives no information about any j # i,j € A.

@ Independence number of X:

k(X) = max{|A| : AC [K] is independent in X} .

For supycg R7(\) < B and B = LQE)T we have, for any 6 € O,

R7(6) > b(0, B) > B for large enough T.

Corollary (Minimax lower bound under strong observability)

For large enough T, for any algorithm, supycg R7(0) > B.

Recovers bounds of Mannor & Shamir (2011), Alon et al. (2015).
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Minimax Lower Bounds for Graph Feedback - Weak Observability

e 0;ij€{l,+o0},©=[0,1]; Si={j : 0ij=0};
o A A" C [K]; A dominates A’ if for any j € A’ there exists i € A such
that j € S;;
» Any j € A can be observed through some i € A.

@ W(X): Set of all weakly observable actions;

o Weak domination number:

p(X) = min{|A| : A dominates W(X) }.

Corollary (Minimax lower bound under weak observability)

(p(£)D) 3 (o T)*/3

Choosing B = 7300g K)277

gives supgcg R7(0) > B for any algorithm.

Recovers bounds of Mannor & Shamir (2011), Alon et al. (2015).
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Upcoming Attractions

@ Just for feedback graphs;
@ Near asymptotically optimal algorithm (new);

@ Single near-minimax optimal algorithm — with logarithmic asymptotic

regret (new).
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Asymptotically Optimal Algorithm

Recall

Co = ce[O,oo Zc,_ foraIIJ;é/l,and Zc,_—
ijES; i:h €S; i2

Let c(0) = argminccc, D iz, G-

Goal: Find an algorithm that achieves O((}_;;, ci(0)A;) log T) regret.

(Simple) idea borrowed from Magureanu et al. (2014):
@ Use forced exploration to ensure that c(f) is well-approximated by

c(@t) uniformly in time, while paying a constant price in total.

e Targeted minimum number of exploration steps 5(:) : N — R is
chosen to be sublinear.
» Magureanu et al. (2014)'s linear schedule 5(n) = Bn requires that they
choose a parameter of their algorithm based on the unknown Apn.

The sublinear schedule avoids this. 14/21



Asymptotically Optimal Algorithm - Pseudocode

ti=t+1 R

Y plays(t)
plays(t) .7
4dalogt € CQt :

Exploitation:
Play I := i1(0;).
Set ne(t + 1) := ne(t).

Play I s.t. Play Iy = i s.t._
arg min; obs;(t) € Sy,. plays; (t) < ¢;(6;)4alogt

!

| Set ne(t+1) =ne(t) + 1. |
¢ e
S

—| Update b, to Oy |

©
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Asymptotically Optimal Algorithm - Upper Bound

Upper bound
For any a > 2, B(n) = an® with a € (0,3], b € (0,1) and for any 6 € ©
such that ¢(0) is unique,

lims Rr(0)
| u
o log T

<4da) c()A;.

i#i
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Minimax Optimal Algorithm

Successive elimination: maintain a set of possibly optimal actions ( “good”

actions) until only one action remains.

In each round r,

@ Explore all “good actions” by playing only “good actions”.

(exploitation)

@ Due to weak observability, sometimes some actions can only be

explored by “bad actions” (exploration-exploitation trade off).

@ Use a sublinear function « to control the exploration using “bad
actions”.
The idea is similar to the CBP algorithm in Bartdk et al. (2014). Here we
use a better exploration method to exploit the feedback structure, which

leads to the optimal dependence on factors such as p(X) and x(X).
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Minimax Optimal Algorithm - Upper Bound
Theorem
With § = % for any 0 € ©:

o If X is strongly observable,

Rr(6) =0 (a log K\/Kk(X)T log T) .

o If XL is weakly observable,

R7(6) = O ((p(Z)D)1/3(JT)2/3 - \/log KT) .

o If we view Anin as constant and only consider dependence on T,

R (6) = O (log3/2 T) .
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Conclusions

Online learning with Gaussian payoffs and side observations;
Smooth interpolation between full-information and bandit settings;
First non-asymptotic, problem-dependent lower bounds in regret
minimization;
Algorithms for o j € {0, +00};
» Asymptotically near-optimal algorithm;
* First for learning with feedback graphs to do this;
» Single near minimax algorithm regardless of observability, with
poly-logarithmic asymptotic regret;
* First for learning with feedback graphs to do this:
* Mannor & Shamir (2011); Alon et al. (2013) and Alon et al. (2015):
No log asymptotic regret, minimax algs.
* Caron et al. (2012) and Buccapatnam et al. (2014): Log asymptotics
(with bad dependence on problem parameters), but no near-minimax

finite time regret.
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Open Problems

@ Remove the assumption of a unique optimal arm for the first
algorithm;
@ Remove the Iogl/2 T overhead for the second algorithm;

@ A single algorithm that achieves both asymptotic and minimax
optimal bounds up to constant factors;

» For bandits, achieved (very) recently (Lattimore, 2015)
@ Algorithm for general ¥;
@ Algorithm for unknown ¥;
@ General tightness of the new lower bound;

@ Algorithms for the (general) stochastic partial monitoring setting.
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