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A Fishy Problem

Each day, you get to choose a fishing spot.

Which one to choose?

Every fish you catch: +1 cookies.

No fish: −10 cookies.

Fish distribution is i.i.d.

With some probability, you will see neighboring sites’ yield for the day.
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The Fishing Game
Choosing a fishing spot: K actions.

θ1, . . . , θK : (unknown) mean rewards for the K spots.

For rounds t = 1, . . . ,T :

Choose a fishing spot It ∈ [K ] := {1, . . . ,K};
Incur reward Yt ∈ R with mean θIt ;

Observe Xt ∈ RK ; noisy reward observations for all the sites

(Yt = Xt,It ).

Assumptions

E[Xt,k ] = θk , and V(Xt,k |It) = σ2
It ,k

with Σ = (σ2
i ,k) known a priori.

Goal

Minimize expected regret RT = T maxi∈[K ] θi −
∑T

t=1 E [Yt ].
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Some Interesting Special Cases
Full information problems: σij = σ for all i , j ∈ [K ].

Bandits: σii = σ for all i ∈ [K ], σij =∞ for all i 6= j .

Graph feedback (Alon et al., 2015):

I Each i ∈ [K ] has Si ⊂ [K ]:

σi,j =




σ, if j ∈ Si ;

+∞, otherwise .

I Self-observability: i ∈ Si for any i ∈ [K ] (Mannor & Shamir, 2011;

Caron et al., 2012; Alon et al., 2013; Buccapatnam et al., 2014; Kocák

et al., 2014).

Strength: Our single model encompasses all these settings

and allows continuous interpolation between them.
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Figure 1: Examples of feedback graphs: (a) full feedback, (b) bandit feedback, (c) loopless
clique, (d) apple tasting, (e) revealing action, (f) a clique minus a self-loop and another edge.

2 Problem Setting and Main Results

Let G = (V, E) be a directed feedback graph over the set of actions V = {1, . . . , K}. For
each i ∈ V , let N in(i) = {j ∈ V : (j, i) ∈ E} be the in-neighborhood of i in G, and let
Nout(i) = {j ∈ V : (i, j) ∈ E} be the out-neighborhood of i in G. If i has a self-loop, that
is (i, i) ∈ E, then i ∈ N in(i) and i ∈ Nout(i).

Before the game begins, the environment privately selects a sequence of loss functions
ℓ1, ℓ2. . . . , where ℓt : V "→ [0, 1] for each t ≥ 1. On each round t = 1, 2, . . . , the player
randomly chooses an action It ∈ V and incurs the loss ℓt(It). At the end of round t,
the player receives the feedback {

(
j, ℓt(j)

)
: j ∈ Nout(It)}. In words, the player observes

the loss associated with each vertex in the out-neighborhood of the chosen action It. In
particular, if It has no self-loop, then the player’s loss ℓt(It) remains unknown, and if the
out-neighborhood of It is empty, then the player does not observe any feedback on that
round. The player’s expected regret against a specific loss sequence ℓ1, . . . , ℓT is defined as
E
[∑T

t=1 ℓt(It)
]

− mini∈V

∑T
t=1 ℓt(i). The inherent difficulty of the T -round online learning

problem induced by the feedback graph G is measured by the minimax regret, denoted by
R(G, T ) and defined as the minimum over all randomized player strategies, of the maximum
over all loss sequences, of the player’s expected regret.
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How to Compare Algorithms?

Performance Metric

Expected regret RT = T maxi∈[K ] θi −
∑T

t=1 E [Yt ].

Minimax Regret:

R∗T = inf
A

sup
θ

RT (A, θ)

Typically, R∗T = O(Tα) with

0 < α < 1 (polynomial minimax

regret), where the constant is a

function of (p, r), Θ, but not the

individual θ.

Regret Asymptotics:

As = set of algorithms with

subpolynomial regret growth, i.e., for

any A ∈ As , α > 0,

RT (A, θ) = O(Tα) .

Problem-dependent sharp asymptotic

regret lower bound: For any θ ∈ Θ,

inf
A∈As

lim inf
T→∞

RT (A, θ)

log(T )
= c(θ) .
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A Unified Lower Bound

Under our setting with general variance matrix Σ, we have a unified,

finite-time, problem-dependent lower bound that recovers

all of the existing results.
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Lower Bound for Gaussian Case

Idea: Only allow algorithms with bounded worst-case regret over Θ!

Given some B > 0, for i 6= i1, let ∆i = maxj θj − θi , 1

εi =
8
√
eB

T
e
W (

∆i T

16
√
eB

)
+ ∆i , mi (θ,B) =

1

ε2
i

log
T (εi −∆i )

8B
.

For i = i1, replace ∆i with ∆i2 . Let

Cθ,B =



c ∈ CR+

T :
K∑

j=1

cj
σ2
ji

≥ mi (θ,B) for all i ∈ [K ]



 .

Theorem (Finite-time problem-dependent lower bound)

For any algorithm s.t. supλ∈Θ RT (λ) ≤ B, any T large enough, any θ ∈ Θ,

RT (θ) ≥ b(θ,B) = min
c∈Cθ,B

∑

i 6=i1

ci∆i .

1W (·) is the Lambert W function satisfying W (x)eW (x) = x .
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Asymptotic Lower Bound for Graph Feedback

Derived from the work of Graves & Lai (1997):

Let ∆i = ∆i (θ); σi ,j ∈ {σ,+∞}. Assumption: optimal action is

unique; let i1, i2 be the index of the best, resp., second best action.

Theorem (Asymptotic lower bound)

For any algorithm A ∈ As , and for any θ ∈ Θ,

lim inf
T→∞

RT (A, θ)

logT
≥ inf

c∈Cθ

∑

i 6=i1

ci∆i ,

where

Cθ =



c ∈ [0,∞)K :

∑

i :j∈Si
ci ≥

2σ2

∆2
j

for all j 6= i1, and
∑

i :i1∈Si
ci ≥

2σ2

∆2
i2



 .
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Recovering the Asymptotic Lower Bound

Corollary (Finite-time problem-dependent lower bound)

For any algorithm such that supλ∈Θ RT (λ) ≤ B, we have, for any θ ∈ Θ,

RT (θ) ≥ b(θ,B) = min
c∈Cθ,B

∑

i 6=i1

ci∆i . (*)

Recall asymptotic lower bound:

lim inf
T→∞

RT (θ)

logT
≥ inf

c∈Cθ

∑

i 6=i1

ci∆i . (**)

For any B = αT β with α > 0 and β ∈ (0, 1) we have

Cθ,B →
(1− β) logT

2
Cθ

as T →∞. Hence, (**) is recovered from (*).
9 / 21



Minimax Lower Bounds (Alon et al., 2015)

Each i ∈ [K ] is associated with an observation set Si ⊂ [K ]: for j ∈ Si ,

σij = σ; for j /∈ Si , σij =∞.

Assume Σ is always observable: for all i , there exists j such that

i ∈ Sj .

Σ is strongly observable if all actions are strongly observable.

I An action i is strongly observable if either it is self-observable or is

observable under any other action. Otherwise, the action is said to be

weakly observable.

Σ is weakly observable if it is observable but not strongly observable.
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Minimax Lower Bounds for Graph Feedback - Strong Observability

σi ,j ∈ {1,+∞}, Θ = [0, 1]; Si = {j : σi ,j = σ}.
A set A ⊂ [K ] is independent in Σ if for any i ∈ A, Si ∩ A ⊂ {i}.

I Choosing i ∈ A gives no information about any j 6= i , j ∈ A.

Independence number of Σ:

κ(Σ) = max{|A| : A ⊂ [K ] is independent in Σ} .

For supλ∈Θ RT (λ) ≤ B and B =
σ
√
κ(Σ)T

8
√
e

we have, for any θ ∈ Θ,

RT (θ) ≥ b(θ,B) ≥ B for large enough T .

Corollary (Minimax lower bound under strong observability)

For large enough T , for any algorithm, supθ∈Θ RT (θ) ≥ B.

Recovers bounds of Mannor & Shamir (2011), Alon et al. (2015).
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Minimax Lower Bounds for Graph Feedback - Weak Observability

σi ,j ∈ {1,+∞}, Θ = [0, 1]; Si = {j : σi ,j = σ};
A,A′ ⊂ [K ]; A dominates A′ if for any j ∈ A′ there exists i ∈ A such

that j ∈ Si ;

I Any j ∈ A′ can be observed through some i ∈ A.

W(Σ): Set of all weakly observable actions;

Weak domination number:

ρ(Σ) = min{|A| : A dominates W(Σ) } .

Corollary (Minimax lower bound under weak observability)

Choosing B = (ρ(Σ)D)1/3(σT )2/3

73(log K)2/3 gives supθ∈Θ RT (θ) ≥ B for any algorithm.

Recovers bounds of Mannor & Shamir (2011), Alon et al. (2015).
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Upcoming Attractions

Just for feedback graphs;

Near asymptotically optimal algorithm (new);

Single near-minimax optimal algorithm – with logarithmic asymptotic

regret (new).
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Asymptotically Optimal Algorithm

Recall

Cθ =



c ∈ [0,∞)K :

∑

i :j∈Si
ci ≥

2σ2

∆2
j

for all j 6= i1, and
∑

i :i1∈Si
ci ≥

2σ2

∆2
i2



 .

Let c(θ) = argminc∈Cθ
∑

i 6=i1
ci∆i .

Goal: Find an algorithm that achieves O( (
∑

i 6=i1
ci (θ)∆i ) logT ) regret.

(Simple) idea borrowed from Magureanu et al. (2014):

Use forced exploration to ensure that c(θ) is well-approximated by

c(θ̂t) uniformly in time, while paying a constant price in total.

Targeted minimum number of exploration steps β(·) : N→ R is

chosen to be sublinear.

I Magureanu et al. (2014)’s linear schedule β(n) = βn requires that they

choose a parameter of their algorithm based on the unknown ∆min.

The sublinear schedule avoids this. 14 / 21



Asymptotically Optimal Algorithm - Pseudocode

Exploitation:
Play It := i1(θ̂t).
Set ne(t+ 1) := ne(t).

plays(t)
4α log t

∈ Cθ̂t ?
Y N

mini obsi(t) < β(ne(t))/K ?

Play It s.t.
argmini obsi(t) ∈ SIt .

Play It = i s.t.
playsi(t) < ci(θ̂t)4α log t

Y N

Set ne(t+ 1) = ne(t) + 1.

Update θ̂t to θ̂t+1.

t := t+ 1
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Asymptotically Optimal Algorithm - Upper Bound

Upper bound

For any α > 2, β(n) = anb with a ∈ (0, 1
2 ], b ∈ (0, 1) and for any θ ∈ Θ

such that c(θ) is unique,

lim sup
T→∞

RT (θ)

logT
≤ 4α

∑

i 6=i1

ci (θ)∆i .
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Minimax Optimal Algorithm

Successive elimination: maintain a set of possibly optimal actions (“good”

actions) until only one action remains.

In each round r ,

Explore all “good actions” by playing only “good actions”.

(exploitation)

Due to weak observability, sometimes some actions can only be

explored by “bad actions” (exploration-exploitation trade off).

Use a sublinear function γ to control the exploration using “bad

actions”.

The idea is similar to the CBP algorithm in Bartók et al. (2014). Here we

use a better exploration method to exploit the feedback structure, which

leads to the optimal dependence on factors such as ρ(Σ) and κ(Σ).
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Minimax Optimal Algorithm - Upper Bound

Theorem

With δ = 1
T , for any θ ∈ Θ:

If Σ is strongly observable,

RT (θ) = O
(
σ logK

√
κ(Σ)T logT

)
.

If Σ is weakly observable,

RT (θ) = O
(

(ρ(Σ)D)1/3(σT )2/3 ·
√

logKT
)
.

If we view ∆min as constant and only consider dependence on T ,

RT (θ) = O
(

log3/2 T
)
.
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Conclusions

Online learning with Gaussian payoffs and side observations;

Smooth interpolation between full-information and bandit settings;

First non-asymptotic, problem-dependent lower bounds in regret

minimization;

Algorithms for σi ,j ∈ {σ,+∞};
I Asymptotically near-optimal algorithm;

F First for learning with feedback graphs to do this;

I Single near minimax algorithm regardless of observability, with

poly-logarithmic asymptotic regret;

F First for learning with feedback graphs to do this:

F Mannor & Shamir (2011); Alon et al. (2013) and Alon et al. (2015):

No log asymptotic regret, minimax algs.

F Caron et al. (2012) and Buccapatnam et al. (2014): Log asymptotics

(with bad dependence on problem parameters), but no near-minimax

finite time regret.
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Open Problems

Remove the assumption of a unique optimal arm for the first

algorithm;

Remove the log1/2 T overhead for the second algorithm;

A single algorithm that achieves both asymptotic and minimax

optimal bounds up to constant factors;

I For bandits, achieved (very) recently (Lattimore, 2015)

Algorithm for general Σ;

Algorithm for unknown Σ;

General tightness of the new lower bound;

Algorithms for the (general) stochastic partial monitoring setting.
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