The information complexity of best-arm identification

Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier

MAB workshop, Lancaster, January 11th, 2016

Context: the multi-armed bandit model (MAB)

K arms $=K$ probability distributions (ν_{a} has mean μ_{a})

At round t, an agent:

- chooses an arm A_{t}
- observes a sample $X_{t} \sim \nu_{A_{t}}$

using a sequential sampling strategy $\left(A_{t}\right)$:

$$
A_{t+1}=F_{t}\left(A_{1}, X_{1}, \ldots, A_{t}, X_{t}\right)
$$

aimed for a prescribed objective, e.g. related to learning

$$
a^{*}=\operatorname{argmax}_{a} \mu_{a} \text { and } \mu^{*}=\max _{a} \mu_{a} .
$$

A possible objective: Regret minimization

Samples $=$ rewards, $\left(A_{t}\right)$ is adjusted to

- maximize the (expected) sum of rewards, $\mathbb{E}\left[\sum_{t=1}^{T} X_{t}\right]$
- or equivalently minimize regret:

$$
R_{T}=\mathbb{E}\left[T \mu^{*}-\sum_{t=1}^{T} X_{t}\right]
$$

\Rightarrow exploration/exploitation tradeoff
Motivation: clinical trials [1933]

$\mathcal{B}\left(\mu_{1}\right) \quad \mathcal{B}\left(\mu_{2}\right) \quad \mathcal{B}\left(\mu_{3}\right) \quad \mathcal{B}\left(\mu_{4}\right) \quad \mathcal{B}\left(\mu_{5}\right)$

Goal: Maximize the number of patients healed during the trial

Our objective: Best-arm identification

Goal : identify the best arm, a^{*}, as fast/accurately as possible. No incentive to draw arms with high means !

\Rightarrow optimal exploration

The agent's strategy is made of:

- a sequential sampling strategy $\left(A_{t}\right)$
- a stopping rule τ (stopping time)
- a recommendation rule \hat{a}_{τ}

Possible goals:

Fixed-budget setting	Fixed-confidence setting
$\tau=T$	minimize $\mathbb{E}[\tau]$
minimize $\mathbb{P}\left(\hat{a}_{\tau} \neq a^{*}\right)$	$\mathbb{P}\left(\hat{a}_{\tau} \neq a^{*}\right) \leq \delta$

Motivation: Market research, A/B Testing, clinical trials...

Our objective: Best-arm identification

Goal : identify the best arm, a^{*}, as fast/accurately as possible. No incentive to draw arms with high means !

\Rightarrow optimal exploration

The agent's strategy is made of:

- a sequential sampling strategy $\left(A_{t}\right)$
- a stopping rule τ (stopping time)
- a recommendation rule \hat{a}_{τ}

Possible goals:

Fixed-budget setting	Fixed-confidence setting
$\tau=T$	minimize $\mathbb{E}[\tau]$
minimize $\mathbb{P}\left(\hat{a}_{\tau} \neq a^{*}\right)$	$\mathbb{P}\left(\hat{a}_{\tau} \neq a^{*}\right) \leq \delta$

Motivation: Market research, A/B Testing, clinical trials...

Wanted: Optimal algorithms in the PAC formulation

\mathcal{M} a class of bandit models $\nu=\left(\nu_{1}, \ldots, \nu_{K}\right)$.
A strategy is δ-PAC on \mathcal{M} is $\forall \nu \in \mathcal{M}, \mathbb{P}_{\nu}\left(\hat{a}_{\tau}=a^{*}\right) \geq 1-\delta$.
Goal: for some classes \mathcal{M}, and $\nu \in \mathcal{M}$, find
\rightarrow a lower bound on $\mathbb{E}_{\nu}[\tau]$ for any δ-PAC strategy
\rightarrow a δ-PAC strategy such that $\mathbb{E}_{\nu}[\tau]$ matches this bound
(distribution-dependent bounds)

Outline

(1) Regret minimization
(2) Lower bound on the sample complexity
(3) The complexity of A / B Testing

44 Algorithms for the general case

Exponential family bandit models

ν_{1}, \ldots, ν_{K} belong to a one-dimensional exponential family:
$\mathcal{P}_{\lambda, \Theta, b}=\left\{\nu_{\theta}, \theta \in \Theta: \nu_{\theta}\right.$ has density $f_{\theta}(x)=\exp (\theta x-b(\theta))$ w.r.t. $\left.\lambda\right\}$
Example: Gaussian, Bernoulli, Poisson distributions...

- ν_{θ} can be parametrized by its mean $\mu=\dot{b}(\theta): \nu^{\mu}:=\nu_{\dot{b}^{-1}(\mu)}$

Notation: Kullback-Leibler divergence

For a given exponential family \mathcal{P},

$$
d_{\mathcal{P}}\left(\mu, \mu^{\prime}\right):=\mathrm{KL}\left(\nu^{\mu}, \nu^{\mu^{\prime}}\right)=\mathbb{E}_{X \sim \nu^{\mu}}\left[\log \frac{d \nu^{\mu}}{d \nu^{\mu^{\prime}}}(X)\right]
$$

is the KL-divergence between the distributions of mean μ and μ^{\prime}.

Example: Bernoulli distributions

$$
d\left(\mu, \mu^{\prime}\right)=\mathrm{KL}\left(\mathcal{B}(\mu), \mathcal{B}\left(\mu^{\prime}\right)\right)=\mu \log \frac{\mu}{\mu^{\prime}}+(1-\mu) \log \frac{1-\mu}{1-\mu^{\prime}} .
$$

Outline

(1) Regret minimization

(2) Lower bound on the sample complexity

3 The complexity of A / B Testing

4 Algorithms for the general case

Optimal algorithms for regret minimization

$\nu=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right) \in \mathcal{M}=(\mathcal{P})^{K}$.
$N_{a}(t)$: number of draws of arm a up to time t

$$
R_{T}(\nu)=\sum_{a=1}^{K}\left(\mu^{*}-\mu_{a}\right) \mathbb{E}_{\nu}\left[N_{a}(T)\right]
$$

- consistent algorithm: $\forall \nu \in \mathcal{M}, \forall \alpha \in] 0,1\left[, R_{T}(\nu)=o\left(T^{\alpha}\right)\right.$
- [Lai and Robbins 1985]: every consistent algorithm satisfies

$$
\mu_{\mathrm{a}}<\mu^{*} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\nu}\left[N_{\mathrm{a}}(T)\right]}{\log T} \geq \frac{1}{d\left(\mu_{\mathrm{a}}, \mu^{*}\right)}
$$

Definition

A bandit algorithm is asymptotically optimal if, for every $\nu \in \mathcal{M}$,

$$
\mu_{a}<\mu^{*} \Rightarrow \limsup _{T \rightarrow \infty} \frac{\mathbb{E}_{\nu}\left[N_{a}(T)\right]}{\log T} \leq \frac{1}{d\left(\mu_{a}, \mu^{*}\right)}
$$

KL-UCB: an asymptotically optimal algorithm

- KL-UCB [Cappé et al. 2013] $A_{t+1}=\arg \max _{a} u_{a}(t)$, with

$$
u_{a}(t)=\underset{x}{\operatorname{argmax}}\left\{d\left(\hat{\mu}_{a}(t), x\right) \leq \frac{\log (t)}{N_{a}(t)}\right\},
$$

where $d\left(\mu, \mu^{\prime}\right)=\operatorname{KL}\left(\nu^{\mu}, \nu^{\mu^{\prime}}\right)$.

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{1}{d\left(\mu_{a}, \mu^{*}\right)} \log T+O(\sqrt{\log (T)})
$$

The information complexity of regret minimization

Letting

$$
\kappa_{R}(\nu):=\inf _{\mathcal{A} \text { consistent } T \rightarrow \infty} \liminf _{T \rightarrow \infty} \frac{R_{T}(\nu)}{\log (T)},
$$

we showed that

$$
\kappa_{R}(\nu)=\sum_{a=1}^{K} \frac{\left(\mu^{*}-\mu_{a}\right)}{d\left(\mu_{a}, \mu^{*}\right)}
$$

Outline

(1) Regret minimization

(2) Lower bound on the sample complexity

3 The complexity of A / B Testing

44 Algorithms for the general case

A general lower bound

\mathcal{M} a class of exponential family bandit models
$\mathcal{A}=\left(A_{t}, \tau, \hat{a}_{\tau}\right)$ a strategy
\mathcal{A} is δ-PAC on $\mathcal{M}: \forall \nu \in \mathcal{M}, \mathbb{P}_{\nu}\left(\hat{a}_{\tau}=a^{*}\right) \geq 1-\delta$.

Theorem [K.,Cappé, Garivier 15]

Let $\nu=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right)$ be such that $\mu_{1}>\mu_{2} \geq \cdots \geq \mu_{K}$. Let $\delta \in] 0,1[$. Any algorithm that is δ-PAC on \mathcal{M} satisfies

$$
\mathbb{E}_{\nu}[\tau] \geq\left(\frac{1}{d\left(\mu_{1}, \mu_{2}\right)}+\sum_{a=2}^{K} \frac{1}{d\left(\mu_{a}, \mu_{1}\right)}\right) \log \left(\frac{1}{2.4 \delta}\right)
$$

$$
d\left(\mu, \mu^{\prime}\right)=\operatorname{KL}\left(\nu^{\mu}, \nu^{\mu^{\prime}}\right)
$$

Behind the lower bound: changes of distribution

Lemma [K., Cappé, Garivier 2015]

$\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right), \nu^{\prime}=\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}, \ldots, \nu_{K}^{\prime}\right)$ two bandit models.

$$
\sum_{a=1}^{K} \mathbb{E}_{\nu}\left[N_{a}(\tau)\right] \operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right) \geq \sup _{\mathcal{E} \in \mathcal{F}_{\tau}} \mathrm{kl}\left(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu^{\prime}}(\mathcal{E})\right)
$$

with $\mathrm{kl}(x, y)=x \log (x / y)+(1-x) \log ((1-x) /(1-y))$.

Lemma [K., Cappé, Garivier 2015]

$\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right), \nu^{\prime}=\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}, \ldots, \nu_{K}^{\prime}\right)$ two bandit models.

$$
\sum_{a=1}^{K} \mathbb{E}_{\nu}\left[N_{a}(\tau)\right] \operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right) \geq \sup _{\mathcal{E} \in \mathcal{F}_{\tau}} \operatorname{kl}\left(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu^{\prime}}(\mathcal{E})\right)
$$

with $\mathrm{kl}(x, y)=x \log (x / y)+(1-x) \log ((1-x) /(1-y))$.
L_{t} the \log-likelihood ratio of past observations under ν and ν^{\prime} :
\rightarrow Wald's equality: $\mathbb{E}_{\nu}\left[L_{\tau}\right]=\sum_{a=1}^{K} \mathbb{E}_{\nu}\left[N_{a}(\tau)\right] \operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right)$
\rightarrow change of distribution: $\forall \mathcal{E} \in \mathcal{F}_{\tau}, \mathbb{P}_{\nu^{\prime}}(\mathcal{E})=\mathbb{E}_{\nu}\left[\exp \left(-L_{\tau}\right) \mathbb{1}_{\mathcal{E}}\right]$

Behind the lower bound: changes of distribution

Exponential bandits: $\nu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right), \nu^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{K}^{\prime}\right)$

$$
\forall \mathcal{E} \in \mathcal{F}_{\tau}, \quad \sum_{a=1}^{K} \mathbb{E}_{\nu}\left[N_{a}(\tau)\right] d\left(\mu_{\mathrm{a}}, \mu_{\mathrm{a}}^{\prime}\right) \geq \mathrm{kl}\left(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu^{\prime}}(\mathcal{E})\right)
$$

$\mathbb{E}_{\nu}[\tau]=\sum_{a=1}^{K} \mathbb{E}_{\nu}\left[N_{a}(\tau)\right]$. Then, for $a \neq 1$,
(1) choose ν^{\prime} such that arm 1 is no longer the best:

$$
\left\{\begin{array}{l}
\mu_{a}^{\prime}=\mu_{1}+\epsilon \\
\mu_{i}^{\prime}=\mu_{i}, \text { if } i \neq a
\end{array}\right.
$$

(2) $\mathcal{E}=\left(\hat{a}_{\tau}=1\right): \mathbb{P}_{\nu}(\mathcal{E}) \geq 1-\delta$ and $\mathbb{P}_{\nu^{\prime}}(\mathcal{E}) \leq \delta$.

$$
\begin{aligned}
\mathbb{E}_{\nu}\left[N_{a}(\tau)\right] d\left(\mu_{a}, \mu_{1}+\epsilon\right) & \geq k l(\delta, 1-\delta) \\
\mathbb{E}_{\nu}\left[N_{a}(\tau)\right] & \geq \frac{1}{d\left(\mu_{a}, \mu_{1}\right)} \log \left(\frac{1}{2.4 \delta}\right) .
\end{aligned}
$$

The complexity of best arm identification

\mathcal{M} a class of exponential family bandit models

Theorem [K.,Cappé, Garivier 15]

Let $\nu=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right)$ be such that $\mu_{1}>\mu_{2} \geq \cdots \geq \mu_{K}$. Let $\delta \in] 0,1[$. Any algorithm that is δ-PAC on \mathcal{M} satisfies

$$
\mathbb{E}_{\nu}[\tau] \geq\left(\frac{1}{d\left(\mu_{1}, \mu_{2}\right)}+\sum_{a=2}^{K} \frac{1}{d\left(\mu_{a}, \mu_{1}\right)}\right) \log \left(\frac{1}{2.4 \delta}\right) .
$$

The complexity of best arm identification

\mathcal{M} a class of exponential family bandit models

Theorem [K.,Cappé, Garivier 15]

Let $\nu=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right)$ be such that $\mu_{1}>\mu_{2} \geq \cdots \geq \mu_{K}$. Let $\delta \in] 0,1[$. Any algorithm that is δ-PAC on \mathcal{M} satisfies

$$
\mathbb{E}_{\nu}[\tau] \geq\left(\frac{1}{d\left(\mu_{1}, \mu_{2}\right)}+\sum_{a=2}^{K} \frac{1}{d\left(\mu_{a}, \mu_{1}\right)}\right) \log \left(\frac{1}{2.4 \delta}\right) .
$$

- For any class \mathcal{M}, the complexity term of $\nu \in \mathcal{M}$ is defined as

$$
\kappa_{\mathrm{C}}(\nu):=\inf _{\mathcal{A} \mathrm{PAC}} \limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log (1 / \delta)}
$$

$\mathcal{A}=(\mathcal{A}(\delta))$ is PAC if for all $\delta \in] 0,1[, \mathcal{A}(\delta)$ is δ-PAC on \mathcal{M}.

Outline

(1) Regret minimization

(2) Lower bound on the sample complexity
(3) The complexity of A / B Testing

4 Algorithms for the general case

Computing the complexity term

\mathcal{M} a class of two-armed bandit models. For $\nu=\left(\nu_{1}, \nu_{2}\right)$ recall that

$$
\kappa_{\mathrm{C}}(\nu):=\inf _{\mathcal{A} \operatorname{PAC}} \limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log (1 / \delta)}
$$

We now compute $\kappa_{C}(\nu)$ for two types of classes \mathcal{M} :

- Exponential family bandit models:

$$
\mathcal{M}=\left\{\nu=\left(\nu^{\mu_{1}}, \nu^{\mu_{2}}\right): \nu^{\mu} \in \mathcal{P}, \mu_{1} \neq \mu_{2}\right\}
$$

- Gaussian with known variances σ_{1}^{2} and σ_{2}^{2} :

$$
\mathcal{M}=\left\{\nu=\left(\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)\right):\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}, \mu_{1} \neq \mu_{2}\right\}
$$

Lower bounds on the complexity

From our previous lower bound (or a similar method)

- Exponential family bandit models:

$$
\kappa_{C}(\nu) \geq \frac{1}{d\left(\mu_{1}, \mu_{2}\right)}+\frac{1}{d\left(\mu_{2}, \mu_{1}\right)} .
$$

- Gaussian with known variances $\sigma_{1}^{2}, \sigma_{2}^{2}$:

$$
\kappa_{C}(\nu) \geq \frac{2 \sigma_{1}^{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}}+\frac{2 \sigma_{2}^{2}}{\left(\mu_{2}-\mu_{1}\right)^{2}} .
$$

Towards tighter lower bounds

Exponential bandits: $\nu=\left(\mu_{1}, \mu_{2}\right), \nu^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right): \mu_{1}^{\prime}<\mu_{2}^{\prime}$

$$
\mathbb{E}_{\nu}\left[N_{1}(\tau)\right] d\left(\mu_{1}, \mu_{1}^{\prime}\right)+\mathbb{E}_{\nu}\left[N_{2}(\tau)\right] d\left(\mu_{2}, \mu_{2}^{\prime}\right) \geq \log \left(\frac{1}{2.4 \delta}\right)
$$

- choosing $\mu_{*}: d\left(\mu_{1}, \mu_{*}\right)=d\left(\mu_{2}, \mu_{*}\right):=d_{*}\left(\mu_{1}, \mu_{2}\right)$:

$$
\begin{aligned}
d_{*}\left(\mu_{1}, \mu_{2}\right) \mathbb{E}_{\nu}[\tau] & \geq \log \left(\frac{1}{2.4 \delta}\right) \\
\mathbb{E}_{\nu}[\tau] & \geq \frac{1}{d_{*}\left(\mu_{1}, \mu_{2}\right)} \log \left(\frac{1}{2.4 \delta}\right)
\end{aligned}
$$

- New lower bounds (tighter!)

Exponential families	Gaussian with known $\sigma_{1}^{2}, \sigma_{2}^{2}$
$\kappa_{C}(\nu) \geq \frac{1}{d_{*}\left(\mu_{1}, \mu_{2}\right)}$	$\kappa_{C}(\nu) \geq \frac{2\left(\sigma_{1}+\sigma_{2}\right)^{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}}$

$d_{*}\left(\mu_{1}, \mu_{2}\right):=d\left(\mu_{1}, \mu_{*}\right)=d\left(\mu_{2}, \mu_{*}\right)$ is a Chernoff information.

- Previous lower bounds

Exponential families	Gaussian with known $\sigma_{1}^{2}, \sigma_{2}^{2}$
$\kappa_{C}(\nu) \geq \frac{1}{d\left(\mu_{1}, \mu_{2}\right)}+\frac{1}{d\left(\mu_{2}, \mu_{1}\right)}$	$\kappa_{C}(\nu) \geq \frac{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{\left(\mu_{1}-\mu_{2}\right)^{2}}$

Upper bounds on the complexity: algorithms

$$
\mathcal{M}=\left\{\nu=\left(\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)\right):\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}, \mu_{1} \neq \mu_{2}\right\}
$$

The α-Elimination algorithm with exploration rate $\beta(t, \delta)$:

\rightarrow chooses A_{t} in order to keep a proportion $N_{1}(t) / t \simeq \alpha$ i.e. $A_{t}=2$ if and only if $\lceil\alpha t\rceil=\lceil\alpha(t+1)\rceil$
\rightarrow if $\hat{\mu}_{a}(t)$ is the empirical mean of rewards obtained from a up to time $t, \sigma_{t}^{2}(\alpha)=\sigma_{1}^{2} /\lceil\alpha t\rceil+\sigma_{2}^{2} /(t-\lceil\alpha t\rceil)$,

$$
\tau=\inf \left\{t \in \mathbb{N}:\left|\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right|>\sqrt{2 \sigma_{t}^{2}(\alpha) \beta(t, \delta)}\right\}
$$

Gaussian case: matching algorithm

Theorem [K., Cappé, Garivier 14]

With $\alpha=\frac{\sigma_{1}}{\sigma_{1}+\sigma_{2}}$ and $\beta(t, \delta)=\log \frac{t}{\delta}+2 \log \log (6 t)$, α-Elimination is δ-PAC and

$$
\forall \epsilon>0, \quad \mathbb{E}_{\nu}[\tau] \leq(1+\epsilon) \frac{2\left(\sigma_{1}+\sigma_{2}\right)^{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}} \log \left(\frac{1}{\delta}\right)+o_{\delta \rightarrow 0}\left(\log \frac{1}{\delta}\right)
$$

In the Gaussian case,

$$
\kappa_{C}(\nu) \leq \frac{2\left(\sigma_{1}+\sigma_{2}\right)^{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}}
$$

and finally

$$
\kappa_{C}(\nu)=\frac{2\left(\sigma_{1}+\sigma_{2}\right)^{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}}
$$

Exponential families: uniform sampling

$$
\mathcal{M}=\left\{\nu=\left(\nu^{\mu_{1}}, \nu^{\mu_{2}}\right): \nu^{\mu} \in \mathcal{P}, \mu_{1} \neq \mu_{2}\right\}
$$

Another lower bound...

A δ-PAC algorithm using uniform sampling $\left(A_{t}=t[2]\right)$ satisfy

$$
\mathbb{E}_{\nu}[\tau] \geq \frac{1}{l_{*}\left(\mu_{1}, \mu_{2}\right)} \log \left(\frac{1}{2.4 \delta}\right)
$$

with

$$
I_{*}\left(\mu_{1}, \mu_{2}\right)=\frac{d\left(\mu_{1}, \frac{\mu_{1}+\mu_{2}}{2}\right)+d\left(\mu_{2}, \frac{\mu_{1}+\mu_{2}}{2}\right)}{2} .
$$

Remark: $I_{*}\left(\mu_{1}, \mu_{2}\right)$ is very close to $d_{*}\left(\mu_{1}, \mu_{2}\right) \ldots$
\Rightarrow find a good strategy with a uniform sampling strategy !

Exponential families: uniform sampling

- For Bernoulli bandit models, uniform sampling and

$$
\tau=\inf \left\{t \in \mathbb{N}^{*}:\left|\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right|>\log \left(\frac{t}{\delta}\right)\right\}
$$

is δ-PAC but not optimal: $\frac{\mathbb{E}_{\nu}[\tau]}{\log (1 / \delta)} \simeq \frac{2}{\left(\mu_{1}-\mu_{2}\right)^{2}}>\frac{1}{l_{*}\left(\mu_{1}, \mu_{2}\right)}$.

SGLRT algorithm (Sequential Generalized Likelihood Ratio Test)

Let $\alpha>0$. There exists $C=C_{\alpha}$ such that the algorithm using a uniform sampling strategy and the stopping rule

$$
\left.\tau=\inf \left\{t \in \mathbb{N}^{*}: t I_{*}\left(\hat{\mu}_{1}(t), \hat{\mu}_{2}(t)\right)>\beta(t, \delta)\right)\right\}
$$

with $\beta(t, \delta)=\log \left(\frac{C^{1+\alpha}}{\delta}\right)$ is δ-PAC and

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log (1 / \delta)} \leq \frac{1+\alpha}{l_{*}\left(\mu_{1}, \mu_{2}\right)}
$$

$$
\kappa_{C}(\nu) \leq \frac{1}{I_{*}\left(\mu_{1}, \mu_{2}\right)}
$$

The complexity of A/B Testing

- For Gaussian bandit models with known variances σ_{1}^{2} and σ_{2}^{2}, if $\nu=\left(\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)\right)$,

$$
\kappa_{C}(\nu)=\frac{\left(\sigma_{1}+\sigma_{2}\right)^{2}}{2\left(\mu_{1}+\mu_{2}\right)^{2}}
$$

and the optimal strategy draws the arms proportionally to their standard deviation.

- For exponential bandit models, if $\nu=\left(\nu^{\mu_{1}}, \nu^{\mu_{2}}\right)$,

$$
\frac{1}{d_{*}\left(\mu_{1}, \mu_{2}\right)} \leq \kappa_{C}(\nu) \leq \frac{1}{I_{*}\left(\mu_{1}, \mu_{2}\right)}
$$

and uniform sampling is close to optimal.

Outline

(1) Regret minimization

(2) Lower bound on the sample complexity
(3) The complexity of A / B Testing

4 Algorithms for the general case

Racing (or elimination) algorithms

$\mathcal{S}=\{1, \ldots, K\}$ set of remaining arms
$r=0$ current round
while $|\mathcal{S}|>1$

- $r=r+1$
- draw each $a \in \mathcal{S}$, compute $\hat{\mu}_{a, r}$, the empirical mean of the r samples observed sofar
- compute the empirical best and empirical worst arms:

$$
b_{r}=\underset{a \in \mathcal{S}}{\operatorname{argmax}} \hat{\mu}_{a, r} \quad w_{r}=\underset{a \in \mathcal{S}}{\operatorname{argmin}} \hat{\mu}_{a, r}
$$

- if EliminationRule $\left(r, b_{r}, w_{r}\right)$, eliminate $w_{r}: \mathcal{S}=\mathcal{S} \backslash\left\{w_{r}\right\}$ end

Outpout: â the single element in \mathcal{S}.

Elimination rules

In the literature:

- Successive Elimination for Bernoulli bandits

$$
\text { Elimination }(r, a, b)=\left(\hat{\mu}_{a, r}-\hat{\mu}_{b, r}>\sqrt{\frac{\log \left(c K t^{2} / \delta\right)}{r}}\right)
$$

[Even Dar et al. 06]

- KL-Racing for exponential family bandits

$$
\text { Elimination }(r, a, b)=\left(l_{a, r}>u_{b, r}\right)
$$

with

$$
\left\{\begin{array}{l}
l_{a, r}=\min \left\{x: r d\left(\hat{\mu}_{a, r}, x\right) \leq \beta(r, \delta)\right\} \\
u_{b, r}=\max \left\{x: r d\left(\hat{\mu}_{b, r}, x\right) \leq \beta(r, \delta)\right\}
\end{array}\right.
$$

[K. and Kalyanakrishnan 13]

EliminationRule (r, a, b)

$$
\begin{aligned}
& =\left(r d\left(\hat{\mu}_{a, r}, \frac{\hat{\mu}_{a, r}+\hat{\mu}_{b, r}}{2}\right)+r d\left(\hat{\mu}_{b, r}, \frac{\hat{\mu}_{a, r}+\hat{\mu}_{b, r}}{2}\right)>\beta(r, \delta)\right) \\
& =\left(2 r I_{*}\left(\hat{\mu}_{a, r}, \hat{\mu}_{b, r}\right)>\beta(r, \delta)\right)
\end{aligned}
$$

Analysis of Racing-SGLRT

Let $\alpha>0$. For an exploration rate of the form

$$
\beta(r, \delta)=\log \left(\frac{C t^{1+\alpha}}{\delta}\right)
$$

Racing-SGLRT is δ-PAC and satifies

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log (1 / \delta)} \leq(1+\alpha)\left(\sum_{a=2}^{K} \frac{1}{l_{*}\left(\mu_{a}, \mu_{1}\right)}\right)
$$

We presented:

- a simple methodology to derive lower bounds on the sample complexity of a δ-PAC strategy
- a characterization of the complexity of best arm identification among two-arm, involving alternative information-theoretic quantities (e.g. Chernoff information)

To be continued...

- A/B Testing: for which classes of distributions is uniform sampling a good idea?
- the complexity of best arm identification is still to be understood in the general case...

$$
\frac{1}{d_{*}\left(\mu_{1}, \mu_{2}\right)}+\sum_{a=2}^{K} \frac{1}{d\left(\mu_{a}, \mu_{1}\right)} \leq \kappa_{C}(\nu) \leq \sum_{a=2}^{K} \frac{1}{l_{*}\left(\mu_{a}, \mu_{1}\right)}
$$

References

- O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics, 2013.
- E. Even-Dar, S. Mannor, Y. Mansour, Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. JMLR, 2006.
- E. Kaufmann, S. Kalyanakrishnan, Information Complexity in Bandit Subset Selection. In Proceedings of the 26th Conference On Learning Theory (COLT), 2013.
- E. Kaufmann, O. Cappé, A. Garivier. On the Complexity of A/B Testing. In Proceedings of the 27th Conference On Learning Theory (COLT), 2014.
- E. Kaufmann, O. Cappé, A. Garivier. On the Complexity of Best Arm Identification in Multi-Armed Bandit Models. JMLR, 2015
- T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 1985.

