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Context: the multi-armed bandit model (MAB)

K arms = K probability distributions (νa has mean µa)

ν1 ν2 ν3 ν4 ν5

At round t, an agent:

chooses an arm At

observes a sample Xt ∼ νAt

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt),

aimed for a prescribed objective, e.g. related to learning

a∗ = argmaxa µa and µ∗ = max
a
µa.
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A possible objective: Regret minimization

Samples = rewards, (At) is adjusted to

maximize the (expected) sum of rewards, E
[∑T

t=1 Xt

]
or equivalently minimize regret:

RT = E

[
Tµ∗ −

T∑
t=1

Xt

]
⇒ exploration/exploitation tradeoff

Motivation: clinical trials [1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

Goal: Maximize the number of patients healed during the trial
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Our objective: Best-arm identification

Goal : identify the best arm, a∗, as fast/accurately as possible.
No incentive to draw arms with high means !

⇒ optimal exploration

The agent’s strategy is made of:

a sequential sampling strategy (At)

a stopping rule τ (stopping time)

a recommendation rule âτ

Possible goals:

Fixed-budget setting Fixed-confidence setting

τ = T minimize E[τ ]
minimize P(âτ 6= a∗) P(âτ 6= a∗) ≤ δ

Motivation: Market research, A/B Testing, clinical trials...
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Wanted: Optimal algorithms in the PAC formulation

M a class of bandit models ν = (ν1, . . . , νK ).
A strategy is δ-PAC on M is ∀ν ∈M,Pν(âτ = a∗) ≥ 1− δ.

Goal: for some classes M, and ν ∈M, find

Ü a lower bound on Eν [τ ] for any δ-PAC strategy

Ü a δ-PAC strategy such that Eν [τ ] matches this bound

(distribution-dependent bounds)
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Outline

1 Regret minimization

2 Lower bound on the sample complexity

3 The complexity of A/B Testing

4 Algorithms for the general case
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Exponential family bandit models

ν1, . . . , νK belong to a one-dimensional exponential family:

Pλ,Θ,b = {νθ, θ ∈ Θ : νθ has density fθ(x) = exp(θx−b(θ)) w .r .t. λ}

Example: Gaussian, Bernoulli, Poisson distributions...

νθ can be parametrized by its mean µ = ḃ(θ) : νµ := νḃ−1(µ)

Notation: Kullback-Leibler divergence

For a given exponential family P,

dP(µ, µ′) := KL(νµ, νµ
′
) = EX∼νµ

[
log

dνµ

dνµ′
(X )

]
is the KL-divergence between the distributions of mean µ and µ′.

Example: Bernoulli distributions

d(µ, µ′) = KL(B(µ),B(µ′)) = µ log
µ

µ′
+ (1− µ) log

1− µ
1− µ′

.
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Optimal algorithms for regret minimization

ν = (νµ1 , . . . , νµK ) ∈M = (P)K .

Na(t) : number of draws of arm a up to time t

RT (ν) =
K∑

a=1

(µ∗ − µa)Eν [Na(T )]

consistent algorithm: ∀ν ∈M,∀α ∈]0, 1[, RT (ν) = o(Tα)
[Lai and Robbins 1985]: every consistent algorithm satisfies

µa < µ∗ ⇒ lim inf
T→∞

Eν [Na(T )]

logT
≥ 1

d(µa, µ∗)

Definition

A bandit algorithm is asymptotically optimal if, for every ν ∈M,

µa < µ∗ ⇒ lim sup
T→∞

Eν [Na(T )]

logT
≤ 1

d(µa, µ∗)
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KL-UCB: an asymptotically optimal algorithm

KL-UCB [Cappé et al. 2013] At+1 = arg maxa ua(t), with

ua(t) = argmax
x

{
d (µ̂a(t), x) ≤ log(t)

Na(t)

}
,

where d(µ, µ′) = KL
(
νµ, νµ

′
)
.
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The information complexity of regret minimization

Letting

κR(ν) := inf
A consistent

lim inf
T→∞

RT (ν)

log(T )
,

we showed that

κR(ν) =
K∑

a=1

(µ∗ − µa)

d(µa, µ∗)
.
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A general lower bound

M a class of exponential family bandit models

A = (At , τ, âτ ) a strategy
A is δ-PAC on M: ∀ν ∈M,Pν(âτ = a∗) ≥ 1− δ.

Theorem [K.,Cappé, Garivier 15]

Let ν = (νµ1 , . . . , νµK ) be such that µ1 > µ2 ≥ · · · ≥ µK .
Let δ ∈]0, 1[. Any algorithm that is δ-PAC on M satisfies

Eν [τ ] ≥

(
1

d(µ1, µ2)
+

K∑
a=2

1

d(µa, µ1)

)
log

(
1

2.4δ

)
.

d(µ, µ′) = KL(νµ, νµ
′
)
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Behind the lower bound: changes of distribution

Lemma [K., Cappé, Garivier 2015]

ν = (ν1, ν2, . . . , νK ), ν ′ = (ν ′1, ν
′
2, . . . , ν

′
K ) two bandit models.

K∑
a=1

Eν [Na(τ)]KL(νa, ν
′
a) ≥ sup

E∈Fτ

kl(Pν(E),Pν′(E)).

with kl(x , y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

Lt the log-likelihood ratio of past observations under ν and ν ′:

Ü Wald’s equality: Eν [Lτ ] =
∑K

a=1 Eν [Na(τ)]KL(νa, ν
′
a)

Ü change of distribution: ∀E ∈ Fτ , Pν′(E) = Eν [exp(−Lτ )1E ]
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Behind the lower bound: changes of distribution

Exponential bandits: ν = (µ1, µ2, . . . , µK ), ν ′ = (µ′1, µ
′
2, . . . , µ

′
K )

∀E ∈ Fτ ,
K∑

a=1

Eν [Na(τ)]d(µa, µ
′
a) ≥ kl(Pν(E),Pν′(E)).

Eν [τ ] =
∑K

a=1 Eν [Na(τ)]. Then, for a 6= 1,

¬ choose ν ′ such that arm 1 is no longer the best :

µa µ1 µ1+ εµ2
µK

{
µ′a = µ1 + ε
µ′i = µi , if i 6= a

­ E = (âτ = 1): Pν(E) ≥ 1− δ and Pν′(E) ≤ δ.

Eν [Na(τ)]d(µa, µ1 + ε) ≥ kl(δ, 1− δ)

Eν [Na(τ)] ≥ 1

d(µa, µ1)
log

(
1

2.4δ

)
.
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The complexity of best arm identification

M a class of exponential family bandit models

Theorem [K.,Cappé, Garivier 15]

Let ν = (νµ1 , . . . , νµK ) be such that µ1 > µ2 ≥ · · · ≥ µK .
Let δ ∈]0, 1[. Any algorithm that is δ-PAC on M satisfies

Eν [τ ] ≥

(
1

d(µ1, µ2)
+

K∑
a=2

1

d(µa, µ1)

)
log

(
1

2.4δ

)
.

For any class M, the complexity term of ν ∈M is defined as

κC(ν) := inf
A PAC

lim sup
δ→0

Eν [τ ]

log(1/δ)

A = (A(δ)) is PAC if for all δ ∈]0, 1[, A(δ) is δ-PAC on M.
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Computing the complexity term

M a class of two-armed bandit models. For ν = (ν1, ν2) recall that

κC(ν) := inf
A PAC

lim sup
δ→0

Eν [τ ]

log(1/δ)

We now compute κC (ν) for two types of classes M:

Exponential family bandit models:

M = {ν = (νµ1 , νµ2) : νµ ∈ P, µ1 6= µ2}

Gaussian with known variances σ2
1 and σ2

2:

M =
{
ν =

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R2, µ1 6= µ2

}
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Lower bounds on the complexity

From our previous lower bound (or a similar method)

Exponential family bandit models:

κC (ν) ≥ 1

d(µ1, µ2)
+

1

d(µ2, µ1)
.

Gaussian with known variances σ2
1, σ

2
2:

κC (ν) ≥ 2σ2
1

(µ1 − µ2)2
+

2σ2
2

(µ2 − µ1)2
.
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Towards tighter lower bounds

Exponential bandits: ν = (µ1, µ2), ν ′ = (µ′1, µ
′
2) : µ′1 < µ′2

Eν [N1(τ)]d(µ1, µ
′
1) + Eν [N2(τ)]d(µ2, µ

′
2) ≥ log

(
1

2.4δ

)
.

previously,

μ2 μ1+εμ1

µ′1 = µ1

µ′2 = µ1 + ε

a new change of distribution:

μ2 μ1μ* μ*+ε

µ′1 = µ∗

µ′2 = µ∗ + ε

choosing µ∗ : d(µ1, µ∗) = d(µ2, µ∗) := d∗(µ1, µ2):

d∗(µ1, µ2)Eν [τ ] ≥ log

(
1

2.4δ

)
Eν [τ ] ≥ 1

d∗(µ1, µ2)
log

(
1

2.4δ

)
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Tighter lower bounds in the two-armed case

New lower bounds (tighter!)

Exponential families Gaussian with known σ2
1, σ

2
2

κC (ν) ≥ 1
d∗(µ1,µ2) κC (ν) ≥ 2(σ1+σ2)2

(µ1−µ2)2

d∗(µ1, µ2) := d(µ1, µ∗) = d(µ2, µ∗) is a Chernoff information.

Previous lower bounds

Exponential families Gaussian with known σ2
1, σ

2
2

κC (ν) ≥ 1
d(µ1,µ2) + 1

d(µ2,µ1) κC (ν) ≥ 2(σ2
1+σ2

2)
(µ1−µ2)2

Emilie Kaufmann (CNRS) The information complexity of best-arm identification



Upper bounds on the complexity: algorithms

M =
{
ν =

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R2, µ1 6= µ2

}
The α-Elimination algorithm with exploration rate β(t, δ) :
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5
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0

Ü chooses At in order to keep a proportion N1(t)/t ' α
i.e. At = 2 if and only if dαte = dα(t + 1)e

Ü if µ̂a(t) is the empirical mean of rewards obtained from a up
to time t, σ2

t (α) = σ2
1/dαte+ σ2

2/(t − dαte),

τ = inf

{
t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
2σ2

t (α)β(t, δ)

}
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Gaussian case: matching algorithm

Theorem [K., Cappé, Garivier 14]

With α =
σ1

σ1 + σ2
and β(t, δ) = log

t

δ
+ 2 log log(6t),

α-Elimination is δ-PAC and

∀ε > 0, Eν [τ ] ≤ (1 + ε)
2(σ1 + σ2)2

(µ1 − µ2)2
log

(
1

δ

)
+ oε
δ→0

(
log

1

δ

)
In the Gaussian case,

κC (ν) ≤ 2(σ1 + σ2)2

(µ1 − µ2)2

and finally

κC (ν) =
2(σ1 + σ2)2

(µ1 − µ2)2
.
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Exponential families: uniform sampling

M = {ν = (νµ1 , νµ2) : νµ ∈ P, µ1 6= µ2}

Another lower bound...

A δ-PAC algorithm using uniform sampling (At = t[2]) satisfy

Eν [τ ] ≥ 1

I∗(µ1, µ2)
log

(
1

2.4δ

)
with

I∗(µ1, µ2) =
d
(
µ1,

µ1+µ2
2

)
+ d

(
µ2,

µ1+µ2
2

)
2

.

Remark: I∗(µ1, µ2) is very close to d∗(µ1, µ2)...

⇒ find a good strategy with a uniform sampling strategy !
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Exponential families: uniform sampling

For Bernoulli bandit models, uniform sampling and

τ = inf
{
t ∈ N∗ : |µ̂1(t)− µ̂2(t)| > log

( t
δ

)}
is δ-PAC but not optimal: Eν [τ ]

log(1/δ) '
2

(µ1−µ2)2 >
1

I∗(µ1,µ2) .

SGLRT algorithm (Sequential Generalized Likelihood Ratio Test)

Let α > 0. There exists C = Cα such that the algorithm using a
uniform sampling strategy and the stopping rule

τ = inf {t ∈ N∗ : tI∗(µ̂1(t), µ̂2(t)) > β(t, δ))}

with β(t, δ) = log
(
Ct1+α

δ

)
is δ-PAC and

lim sup
δ→0

Eν [τ ]

log(1/δ)
≤ 1 + α

I∗(µ1, µ2)
.

κC (ν) ≤ 1

I∗(µ1, µ2)
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The complexity of A/B Testing

For Gaussian bandit models with known variances σ2
1 and σ2

2,
if ν = (N (µ1, σ

2
1),N (µ2, σ

2
2)),

κC (ν) =
(σ1 + σ2)2

2(µ1 + µ2)2

and the optimal strategy draws the arms proportionally to
their standard deviation.

For exponential bandit models, if ν = (νµ1 , νµ2),

1

d∗(µ1, µ2)
≤ κC (ν) ≤ 1

I∗(µ1, µ2)

and uniform sampling is close to optimal.
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Racing (or elimination) algorithms

S = {1, . . . ,K} set of remaining arms
r = 0 current round
while |S| > 1

r=r+1

draw each a ∈ S, compute µ̂a,r , the empirical mean of the r
samples observed sofar

compute the empirical best and empirical worst arms:

br = argmax
a∈S

µ̂a,r wr = argmin
a∈S

µ̂a,r

if EliminationRule(r , br ,wr ), eliminate wr : S = S\{wr}
end

Outpout: â the single element in S.
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Elimination rules

In the literature:

Successive Elimination for Bernoulli bandits

Elimination(r , a, b) =

(
µ̂a,r − µ̂b,r >

√
log (cKt2/δ)

r

)

[Even Dar et al. 06]

KL-Racing for exponential family bandits

Elimination(r , a, b) = (la,r > ub,r )

with {
la,r = min{x : rd(µ̂a,r , x) ≤ β(r , δ)}
ub,r = max{x : rd(µ̂b,r , x) ≤ β(r , δ)}

[K. and Kalyanakrishnan 13]
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The Racing-SGLRT algorithm

EliminationRule(r , a, b)

=

(
rd

(
µ̂a,r ,

µ̂a,r + µ̂b,r
2

)
+ rd

(
µ̂b,r ,

µ̂a,r + µ̂b,r
2

)
> β(r , δ)

)
= (2rI∗ (µ̂a,r , µ̂b,r ) > β(r , δ))

Analysis of Racing-SGLRT

Let α > 0. For an exploration rate of the form

β(r , δ) = log

(
Ct1+α

δ

)
,

Racing-SGLRT is δ-PAC and satifies

lim sup
δ→0

Eν [τ ]

log(1/δ)
≤ (1 + α)

(
K∑

a=2

1

I∗(µa, µ1)

)
.
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Conclusion

We presented:

a simple methodology to derive lower bounds on the sample
complexity of a δ-PAC strategy

a characterization of the complexity of best arm identification
among two-arm, involving alternative information-theoretic
quantities (e.g. Chernoff information)

To be continued...

A/B Testing: for which classes of distributions is uniform
sampling a good idea?

the complexity of best arm identification is still to be
understood in the general case...

1

d∗(µ1, µ2)
+

K∑
a=2

1

d(µa, µ1)
≤ κC (ν) ≤

K∑
a=2

1

I∗(µa, µ1)
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