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Context: the multi-armed bandit model (MAB)

K arms = K probability distributions (v, has mean pu,)

n 2

At round t, an agent:

@ chooses an arm A;

@ observes a sample X; ~ vy,

using a sequential sampling strategy (A;):
At+1 = Ft(A]_, X]_, “ e 7At7 Xt)7
aimed for a prescribed objective, e.g. related to learning

a* = argmax, p, and g’ = maxp,.
a
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A possible objective: Regret minimization

Samples = rewards, (A;) is adjusted to
@ maximize the (expected) sum of rewards, E [Z;l Xt}

@ or equivalently minimize regret:
-
Tw = X
t=1

= exploration/exploitation tradeoff

Rr=E

Motivation: clinical trials [1933] * ; o
® @ = S

B(p1) B(u2) B(us)  B(ua) B(us)

Goal: Maximize the number of patients healed during the trial
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Our objective: Best-arm identification

Goal : identify the best arm, 2", as fast/accurately as possible.
No incentive to draw arms with high means !

= optimal exploration

The agent's strategy is made of:
@ a sequential sampling strategy (A;)
@ a stopping rule T (stopping time)

@ a recommendation rule 3,

Possible goals:

Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]

minimize P(3, # a*) P(a, #a*) <4

Motivation: Market research, A/B Testing, clinical trials...
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Wanted: Optimal algorithms in the PAC formulation

M a class of bandit models v = (v1,...,vk).
A strategy is 0-PAC on M is Vv & M. T ,/(?3, =a*)>1-4.

Goal: for some classes M, and v € M, find
=» a lower bound on E,[7] for any §-PAC strategy
=» a 0-PAC strategy such that E, [7] matches this bound

(distribution-dependent bounds)
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@ Regret minimization
9 Lower bound on the sample complexity
© The complexity of A/B Testing

@ Algorithms for the general case
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Exponential family bandit models

vi,...,Vk belong to a one-dimensional exponential family:
Pro.b = {vs,0 € © : vy has density fy(x) = exp(6x—b(0)) w.r.t. A\}

Example: Gaussian, Bernoulli, Poisson distributions...

@ vy can be parametrized by its mean ;1 — b(#) : v = Vh-1()

Notation: Kullback-Leibler divergence

For a given exponential family P, g
dp (i, 1) = KL, ") = Extonn [Iog ﬁ(X)]

is the KL-divergence between the distributions of mean p and p/'.

Example: Bernoulli distributions
% 1-—p
d(p, ') = KL(B(n), B(1')) = plog o (1~ n)log ;

_/’[/I.
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@ Regret minimization
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Optimal algorithms for regret minimization

v=(",.. . v)e M= (P)X.

N,(t) : number of draws of arm a up to time t
K
Rr(v) = (1" — 1a)Es [Na(T)]
a=1

@ consistent algorithm: Vv € M,Va €]0,1[, Rr(v) = o(T?)
@ [Lai and Robbins 1985]: every consistent algorithm satisfies

.. EL[NL(T)] 1
= f >
Ha =t =0 log T = d(jtar %)

Definition

A bandit algorithm is asymptotically optimal if, for every v € M,

_ E,[N,(T)] 1
< p* = limsup <
fa =l Tooo logT d(pa, p1*)
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KL-UCB: an asymptotically optimal algorithm

o KL-UCB [Cappé et al. 2013] A;11 = argmax, uy(t), with

log(t)
Na(t) } ’

us(t) = arg)r(nax {d (1a(t), x) <

where d(pu, 1) = KL <V“,y“/) .

AN, 0.9
2(a-8, (N, ()7
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The information complexity of regret minimization

Letting

o Rr(v)
AR(V) = nf it Ty

we showed that

K

K)R(l/ — Z( * :U'a)

= (:u’37
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9 Lower bound on the sample complexity
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A general lower bound

M a class of exponential family bandit models

A = (A, 7,3;) a strategy
Ais -PACon M: Vv e M. P, (3, =a") > 1 0.

Theorem

Let v = (v, ..., v#K) be such that /i1 > o > - > k.
Let 0 €]0,1[. Any algorithm that is 6-PAC on M satisfies

1 K

1 1
= <d(H1,M2) +; d(ua,u1)> °8 (ﬁ) '

d(p, 1) = KL(*, ")
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Behind the lower bound: changes of distribution

Lemma

v=(,1,...,vk), vV = (v],V5,...,Vx) two bandit models.

ZE [Na(7)]KL(va, ) >8sup KI(P, (&), P,(E)).

-

with kl(x, y) = xlog(x/y) + (1 — x) log((1 — x) /(1 — y)).
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Behind the lower bound: changes of distribution

Lemma

v=(,1,...,vk), vV = (v],V5,...,Vx) two bandit models.

ZE [Na(7)]KL(va, ) >8qu5 KI(P, (&), P, (E)).

with kl(x, y) = xlog(x/y) + (1 — x) log((1 — x) /(1 — y)).

L; the log-likelihood ratio of past observations under v and v/
= Wald's equality: E,[L;] = S5 | B, [Na(7)]KL(va, )
=» change of distribution: V€ € F., P,/(£) = E, [exp(—L;)1¢]
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Behind the lower bound: changes of distribution

Exponential bandits: v = (u1, po, . . ., k), V' = (1, s - o5 )

K
VE € Fr, Y Ey[Na(n)ld(pa, 1) = KI(BL(E), Pur(E)).

a=1

E,[r] = K | B, [Na(7)]. Then, for a # 1,

® choose »/ such that arm 1 is no longer the best :

- ™ f, = p1te
= if i#a

, .
Hk Ha U2 M Wt ’U/’ - 'ul )

@E&E=(@,=1):P(&)>1—0and P (&) <0,

Ey[Na(7)]d(pta, 1 + €)

1 1
Ey[Na(7)] d(a 1) log (m) :

v

KI(5,1— §)

Y
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The complexity of best arm identification

M a class of exponential family bandit models

Let v = (v, ..., v#K) be such that /11 > o > - = k.
Let 0 €]0,1[. Any algorithm that is 6-PAC on M satisfies

1 AR 1
Sl = <d(M1,M2) +; d(ua,u1)> °8 (m) '
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The complexity of best arm identification

M a class of exponential family bandit models

Let v = (v, ..., v#K) be such that /11 > o > - = k.
Let 0 €]0,1[. Any algorithm that is 6-PAC on M satisfies

1 AR 1
Sl = <d(M1,M2) +; d(ua,u1)> °8 (W) '

@ For any class M, the complexity term of v & M is defined as

APAC 59 log(1/6)

kc(v) :=inf limsup E,[7] J

A = (A(9)) is PAC if for all 6 €]0,1[, A(6) is 5-PAC on M.
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© The complexity of A/B Testing
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Computing the complexity term

M a class of two-armed bandit models. For v = (11, 12) recall that

=inf |i W ZRY
re(v) AlgAcl?jgplog(l/é)

We now compute k¢ (v) for two types of classes M:

@ Exponential family bandit models:
M={v =" v): " € P, # 1o}
@ Gaussian with known variances o2 and 03:

M={v= (N (p1,0%) . N (12,03)) : (11, p2) € R? pig # o}
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Lower bounds on the complexity

From our previous lower bound (or a similar method)
@ Exponential family bandit models:

1 . 1
d(pa, p2)  d(po, 1)

/\.'C(I,/) 2

o Gaussian with known variances o2, o3:

20% N 20%

kclv) > .
( ) (/11*/'2)2 (//2*//1)2
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Towards tighter lower bounds

Exponential bandits: v = (u1, p2), v = (ph, ph) = ph < ph

B () )+ B[Nl ) 2 Vo (55 ) J

previously, a new change of distribution:
E l-'=1 U:’: M2 M- petE M1
o= m o= i
fy = p1te o = fte

@ choosing o = d(j. pin) = d(po. pie) = dul i, p1o):

di(pa, p2)Eu[r] > log <2115>

1 1
>
&H-mwm»m<u9
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@ New lower bounds (tighter!)

Tighter lower bounds in the two-armed case

Exponential families

Gaussian with known o7, o5

1
rc(v) = e (i, 112)

> 2(0’1 +02)2
= (=)’

ke(v)

di(p1, 2) := d(p1, ps) = d(pz, ps) is a Chernoff information.

@ Previous lower bounds

Exponential families

Gaussian with known O'%,O’%

1 1
HC(V) > d(pi,p2) + d(p2,111)

2(02+03)
> 1103
= (pm1—p2)?

kc(v)
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Upper bounds on the complexity: algorithms

M={v =N (p1,07) , N (12,03)) : (11, 12) € R?, pu1 # p1}
The a-Elimination algorithm with exploration rate §(t,0) :
ol h%
° lfﬁ/—

=» chooses A; in order to keep a proportion Ni(t)/t ~ «
i.e. Ar =2 if and only if [at] = [a(t + 1)]

=» if fi5(t) is the empirical mean of rewards obtained from a up
to time t, 02(a) = o2 /[at] + 03/(t — [at]),

T =inf {t € N |f1(t) — fa(t)| > \/202(a)B(t, 5)}
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Gaussian case: matching algorithm

t
With o = 011102 and f3(t.0) = log ; + 2loglog(61),

a-Elimination is §-PAC and

2 2 1 1
Ve>0, E,[r]<(1+ G)L(D)Z log (—) + o <Iog —)
(11 — p2) 5—0

In the Gaussian case,
2(01 + 02)2

") < T )2

and finally
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Exponential families: uniform sampling

M={v =" v"?): " € P, # p2}

Another lower bound...
A 0-PAC algorithm using uniform sampling (Ay = t[2]) satisfy

1 1
>
512 e % (55

d , p1tp2 +d , p1t+p2
/*(,Ula/Q) _ (Iul 2 ) 5 (MZ 2 )

with

Remark: /.(u1, p2) is very close to di(p1, i£2)...

= find a good strategy with a uniform sampling strategy !
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Exponential families: uniform sampling

@ For Bernoulli bandit models, uniform sampling and

t
T = inf {t € N": | (t) — fia(t)[ > log <3>}
(

E,[r] 2 > 1
log(1/9) — (p1—p2)? L (p1,p2)

SGLRT algorithm (Sequential Generalized Likelihood Ratio Test)

Let a > 0. There exists C = C, such that the algorithm using a
uniform sampling strategy and the stopping rule

T =inf{t € N* : th(f1(t), f2(t)) > B(t,9))}
with 3(t,9) = log (%) is 0-PAC and

lim sup Evl] < e
50 log(1/0) = h(pa, p2)

1
L (1, p2)

is 6-PAC but not optimal:

ke(v) <
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The complexity of A/B Testing

@ For Gaussian bandit models with known variances af and a%,

if v = (N(p1,02), N (112, 03)),

(01 + 02)?

") 2+

and the optimal strategy draws the arms proportionally to
their standard deviation.

e For exponential bandit models, if v = (v#1, v#2),

PSR
— < k() ——
d*(/L]_,,UQ) I*(Ml;ﬂ2)

and uniform sampling is close to optimal.
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@ Algorithms for the general case
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Racing (or elimination) algorithms

S={1,...,K} set of remaining arms
r = 0 current round
while |S| > 1

o r=r+1

e draw each a € §, compute fi, ,, the empirical mean of the r
samples observed sofar

@ compute the empirical best and empirical worst arms:

b, = argmax fi,, w, = argmin i, ,
aesS aes

o if EliminationRule(r, b,, w;), eliminate w, : S = S\{w,}
end

Outpout: 3 the single element in S.
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Elimination rules

In the literature:

@ Successive Elimination for Bernoulli bandits

log (cKt2/§
Elimination(r, a, b) = (ﬁar — Dby > g(/()>
,

[Even Dar et al. 06]

@ KL-Racing for exponential family bandits

Elimination(r, a, b) = (L, > up )

with

{ Ly = min{x: rd(fia,,x) < B(r,0)}
up, = max{x:rd(fip,,x)<pB(r,0)}

[K. and Kalyanakrishnan 13]
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The Racing-SGLRT algorithm

EliminationRule(r, a, b)
N4 d ) A N
_ (rd <M H2Mb> o (Mbm M;Mb> - B(r. 5)>

= (2rls (f1a,r, fin,r) > B(r,9))

Analysis of Racing-SGLRT

Let o > 0. For an exploration rate of the form

1+a
B(r,8) = log (Ct5 ) :
Racing-SGLRT is §-PAC and satifies

. E,[7] o
5P Tog(1/0) = ) (Z /*(ua,m) |

a=2
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Conclusion

We presented:

@ a simple methodology to derive lower bounds on the sample
complexity of a §-PAC strategy

@ a characterization of the complexity of best arm identification
among two-arm, involving alternative information-theoretic
quantities (e.g. Chernoff information)

To be continued...

e A/B Testing: for which classes of distributions is uniform
sampling a good idea?

@ the complexity of best arm identification is still to be
understood in the general case..
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