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What is a multi-armed bandit problem?
Motivation

A gambler’s dilemma:

• correctly identifying the most rewarding
arm (learning) requires playing the worse
arms a large number of times

• making the highest expected profit of
the game (earning) requires making a
(possibly wrong) choice of a best arm to
play thereafter

How does the gambler optimally balance these two goals?
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A gambler’s dilemma:

• correctly identifying the most rewarding
arm (learning) requires playing the worse
arms a large number of times

• making the highest expected profit of
the game (earning) requires making a
(possibly wrong) choice of a best arm to
play thereafter

How does the gambler optimally balance these two goals?

“Bandit problems embody in essential form a conflict evident in all
human action: information versus immediate payoff.” - Prof. Peter

Whittle (1989)



What is the multi-armed bandit problem?
Problem definition: Bayesian Bernoulli K-armed bandit problem

• K independent arms (each is a draw from a Bernoulli
population Yk,t with unknown parameter pk)

• A each discrete time point t, only one arm can be played
(earning the observed value yk,t)

• A Bayesian approach to learning about pk ’s defines the state
space and dynamics over it.

• Each pk has a Beta prior before arm k has been played
(Be(sk,0, fk,0)) that is sequentially converted into Beta
posteriors as observations of that arm are collected
(Be(sk,0 + Sk,t , fk,0 + Fk,t)).

• (Sk,t ,Fk,t) represents the random number of successes and
failures observed for arm k after having pulled t arms.



The Bayesian approach to the bandit problem in pictures
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nA = 0sA = 0fA = 0, nB = 0sB = 0fB = 0 −→ Uniform Priors on pi
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nA = 6sA = 4fA = 2, nB = 6sB = 2fB = 4 −→ Beta Posteriors on pi
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The Bayesian approach to the bandit problem in pictures

nA = 20sA = 13fA = 7, nB = 20sB = 7fB = 13 −→ Beta Posteriors on pi
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Problem’s state space and dynamics
Problem definition: Bayesian Bernoulli K-armed bandit problem

• The state space:
Xk,t = {(sk,0+Sk,t , fk,0+Fk,t) ∈ N2

+ : Sk,t+Fk,t ≤ t, for t = 0, 1, . . . ,T}

• Denote the available information on arm k at time t as
xk,t = (sk,0 + sk,t , fk,0 + sk,t)

• The state (Markovian) dynamics:

xk,t+1 =


(sk,0 + sk,t + 1, fk,0 + fk,t) , if ak,t = 1 w.p

sk,0+sk,t
sk,0+fk,0+sk,t+fk,t

,

(sk,0 + sk,t , fk,0 + fk,t + 1) , if ak,t = 1 w.p
fk,0+fk,t

sk,0+fk,0+sk,t+fk,t
,

xk,t , if ak,t = 0 w.p 1,

(1)
for any xk,t ∈ Xk,t .
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Solving the learning-earning dilemma
Setting the compass

• To complete the specification of a multi-armed bandit model
the problem’s objective function must be selected.

• Given an objective function and a time horizon, a multi-armed
bandit optimal control problem is the problem of finding a
feasible playing policy/strategy/rule, π that optimizes the
selected performance objective.

• The set of all the feasible policies/strategies/rules Π are those
that fulfill the resource constraint (e.g. one arm at a time)



Solving the learning-earning dilemma
An earning oriented objective

• Let ak,t be a binary variable representing the selected action
for arm k at time t. ak,t = 1 represents that arm k is pulled
at time t.

• The resource constrain is in this case
K∑

k=1

ak,t ≤ 1 for all t.

• Denote the expected reward function and playing horizon
respectively as R(xk,t , ak,t) =

sk,0+sk,t
sk,0+fk,0+sk,t+fk,t

ak,t and T

• Then one optimisation criterion is to maximise the expected
total discounted (ETD) number of successes after T
observations, where 0 < d < 1.

V ∗D(x̃0) = max
π∈Π

Eπ

[
T−1∑
t=0

K∑
k=1

d tR(xk,t , ak,t)
∣∣∣x̃0 = (xk,0)Kk=1

]
(2)



Solving the learning-earning dilemma
A learning oriented objective

• Robbins (1952) proposed an alternative objective for the
Bayesian Bernoulli bandit problem.

• He considered the average regret after playing T times (for a
large T and for any given and unknown (pk)Kk=1).

• For the Bayesian Bernoulli K -armed bandit problem, the total
regret ρ is defined as

ρ(T ) = T max
k
{pk}−Eπ

[
T−1∑
t=0

K∑
k=1

ak,tYk,t

]
for some (pk)Kk=1.

(3)

• A form of asymptotic optimality can be defined for sampling
rules π in terms of (3) if it holds that for any (pk)Kk=1:

limT→∞
ρ(T )
T = 0.
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The classic multi-armed bandit problem
An earning oriented objective with an infinite horizon

• If we set T =∞ and we consider the ETD objective then the
resulting bandit is the classic bandit problem (OR).

• It attained this status because of the long standing challenge
it posed.

• The problem can be solved via a dynamic programming (DP)
approach but suffers from a severe computational burden.

• Before the alternative solution first obtained by Gittins and
Jones (1974) the realistic scenarios of the problem (e.g.
K > 3) were computationally unfeasible.



Classic Multi-armed Bandit: divide and conquer!
Infinite horizon case

Theorem (’74, ’79, ’89): The ETD reward is maximised by pulling
at time t the arm having the greatest value of a dynamic allocation
index:

Gk(xk,t) = sup
τ≥1

Exk,t

τ−1∑
s=0

R(xk,t , ak,t)d
s

Exk,t

τ−1∑
s=0

d s

(4)

with τ is a (past-measurable) random stopping time.
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Theorem (’74, ’79, ’89): The ETD reward is maximised by pulling
at time t the arm having the greatest value of a dynamic allocation
index:

Gk(xk,t) = sup
τ≥1

Exk,t

τ−1∑
s=0

R(xk,t , ak,t)d
s

Exk,t

τ−1∑
s=0

d s

(4)

with τ is a (past-measurable) random stopping time.

Huge computational gains! The index can be computed as the
solution to a 1 armed bandit problem



The Gittins index
How does it look like? (d=0.99 T*=750)



The classic multi-armed bandit problem
Why is the ETD criteria not a learning oriented goal?

• The Gittins index (or equivalently the DP solution) chooses an
arm at some t <∞ and plays it thereafter.

• This “chosen arm” has a positive probability of being
suboptimal (Rothschild, 1974).

• This is known as incomplete learning.

• A necessary condition to have complete learning is to have a
strictly positive probability of playing every arm for every t.



The classic multi-armed bandit problem
Can we use the Gittins index to achieve a learning-oriented goal?

• Bather (1981) proposed to add random perturbations to an index rule
based on the observed data at each stage.

• The (deterministic) part captures the importance of the exploitation or
earning based on the accumulated information and the (random)
perturbation part, captures the exploration or learning element.

• Glazebrook (1980)

I (xk,t) = G (xk,t) + Zt ∗ λ(sk,0 + sk,t + fk,t + fk,0), (5)

Zt is an i.i.d. non-negative and unbounded random variable and
λ(sk,0 + sk,t + fk,t + fk,0)→ 0 as sk,0 + sk,t + fk,t + fk,0 →∞
and is a sequence of non-negative constants.

• Example: Zt(K ) ∼ exp( 1
K ); λ(sk,0 + sk,t + fk,t + fk,0) = K

sk,0+sk,t+fk,t+fk,0
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The classic K-armed bandit problem with a finite horizon
Reformulated Problem’s state space and dynamics

• The state space:
X̃k,t = {(sk,0 + Sk,t , fk,0 + Fk,t ,T − t) ∈ N2

+ : Sk,t + Fk,t ≤ t, for t =
0, 1, . . . ,T} and absorbing state E for t > T

• The available information x̃k,t = (sk,0 + sk,t , fk,0 + sk,t ,T − t)

• The State dynamics:

x̃k,t+1 =



if ak,t = 1 :

(sk,0 + sk,t + 1, fk,0 + fk,t ,T − (t + 1)) , w.p
sk,t+sk,0

sk,t+fk,t+sk,0+fk,0
,

(sk,0 + sk,t , fk,0 + fk,t + 1,T − (t + 1)) , w.p
fk,t+fk,0

sk,t+fk,t+sk,0+fk,0
,

if ak,t = 0 (xk,t ,T − (t + 1)) , w.p 1,

∀x̃k,t such that 0 ≤ t ≤ T − 1. x̃k,T and E , ∀a, lead to E w.p. 1



The classic K-armed bandit problem with a finite horizon
Restless Bandits and the Whittle index solution

• In the previous reformulation T =∞ yet the Gittins index
theorem does not apply.

• Unplayed arms continue to evolve → bandits are Restless
Whittle (1980)

• Again the problem can be solved via a dynamic programming
approach at the expense of a severe computational burden.

• Whittle proposed an index that generalises Gittins index, but
its existence is not guaranteed for every restless MABP. And, if
it exists, is not necessarily optimal, being thus a heuristic rule.

• The reformulated restless problem is indexable and the
Whittle index can be computed as a modified version of the
Gittins index, in which the search of the optimal stopping time
in (4) is truncated to be ≤ T − t (at each t)



The Whittle index
How does it look like? (d=1 T=180)
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Comparison of rules in the context of clinical trials
Earning vs. learning dilemma solved differently

Crit. H0 : p0 = pk = 0.3 for k = 1, . . . , 3
Value α p∗ (s.e.) ENS (s.e.)

Fixed Equal 2.128 0.047 0.250 (0.02) 126.86 (9.41)
Thompson Sampling 2.128 0.056 0.251 (0.07) 126.93 (9.47)

UCB 2.128 0.055 0.251 (0.06) 126.97 (9.41)
RBI 2.128 0.049 0.250 (0.03) 126.77 (9.40)
RGI 2.128 0.046 0.250 (0.03) 126.80 (9.36)

Current Belief Fa 0.047 0.269 (0.39) 126.89 (9.61)
GI Fa 0.048 0.248 (0.18) 126.68 (9.40)

CGI 2.128 0.034 0.250 (0.02) 127.16 (9.46)

Upper Bound 126.90 (0.00)

Table: Comparison of different four-arm trial designs of size T = 423.
Fa: Fisher’s adjusted test; α: family wise type I error; 1− β: power; p∗:
expected proportion of patients in the trial assigned to the best
treatment; ENS: expected number of patient successes.



Comparison of rules in the context of clinical trials
Earning vs. learning dilemma solved differently

Crit. H1 : p0 = pk = 0.3 k = 1, 2:, p3 = 0.5
Value (1− β) p∗ (s.e.) ENS (s.e.)

Fixed Equal 2.128 0.814 0.250 (0.02) 148.03 (9.77)
Thompson Sampling 2.128 0.884 0.529 (0.09) 172.15 (13.0)

UCB 2.128 0.877 0.526 (0.07) 171.70 (11.9)
RBI 2.128 0.846 0.368 (0.04) 158.34 (10.4)
RGI 2.128 0.847 0.358 (0.03) 157.26 (10.3)

Current Belief Fa 0.213 0.677 (0.41) 184.87 (36.8)
GI Fa 0.428 0.831 (0.10) 198.25 (13.7)

CGI 2.128 0.925 0.640 (0.08) 182.10 (12.3)

Upper Bound 1 211.50 (0.00)

Table: Comparison of different four-arm trial designs of size T = 423.
Fa: Fisher’s adjusted test; α: family wise type I error; 1− β: power; p∗:
expected proportion of patients in the trial assigned to the best
treatment; ENS: expected number of patient successes.



Comparison of rules in the context of clinical trials
Earning vs. learning dilemma when patients are scarce

Crit. H1 : pk = 0.3 + 0.1× k k = 0, 1, 2, 3
Value (1− β) p∗ (s.e.) ENS (s.e.)

Fixd Equal F 0.300 0.250 (0.04) 35.99 (4.41)
Thompson Sampling F 0.246 0.338 (0.08) 38.34 (4.68)

UCB F 0.218 0.362 (0.08) 38.84 (4.71)
RBI F 0.295 0.268 (0.03) 36.52 (4.41)
RGI F 0.298 0.265 (0.03) 36.45 (4.36)

Current Belief Fa 0.056 0.419 (0.38) 40.92 (6.89)
WI Fa 0.001 0.537 (0.31) 42.65 (6.02)
GI Fa 0.002 0.492 (0.21) 41.60 (5.44)

CGI Fa 0.349 0.393 (0.16) 38.29 (4.82)

Upper Bound 1 48.00 (0.00)

Table: Comparison of different four-arm trial designs of size T = 80. F:
Fisher; α: type I error; 1− β: power; p∗: expected proportion of patients
in the trial assigned to the best treatment; ENS: expected number of
patient successes.
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Solving the learn-earn dilemma, goals and horizon
Key takeways

• The optimal learning-earning balance depends crucially on:

(a) What are we concerned the most? Correct selection or
expected total rewards over time

(b) How many plays do we have to achieve this? infinite/cheap or
few/expensive

• The trade-off between earnings and information is
unavoidable. However, in many contexts current solutions can
be improved.

• When the number of plays is limited and few, the problem
gets harder and solutions need to get smarter by introducing
the problem’s horizon into them.
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Further Discussion
Questions & Comments

Do you have a month? My thesis was on bandit
problems. - Don Berry

Thanks for the attention! ,
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