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I Consider a two-arm clinical trial with binary end points and a finite number of
patients, n.

I Suppose each treatment, A and B , has an unknown success probability, θA
and θB, respectively, and each patient’s response is immediately available.

I The null and alternative hypotheses are formulated as

H0 : θA = θB versus H1 : θA 6= θB,

and we assume θA, θB ∼ Beta(1, 1) a priori.

Objective: To design a clinical trial which identifies the superior treatment
(explores) whilst effectively treating the trial participants (exploits). This will
be particularly useful in trials for rare diseases.

I This is a natural application area for bandit models which seek to balance the
exploration versus exploitation trade-off to obtain an optimal allocation
policy.

I Bandit models are a type of response-adaptive design.

I Learning takes place during the trial (rather than just at the end as in the
traditional randomised controlled trial).

I The optimality property, in terms of maximising the expected number of
patient successes, is the primary motivation behind implementing
bandit-based designs in clinical practice.

Introduction & Motivation

I We use DP to obtain the optimal adaptive treatment allocation sequence.

I The idea behind DP is a recurrence equation (the Bellman equation), which
relates the expected total reward at a given decision time to the distribution
of its possible values at the next decision time.

I We implement a backward induction algorithm in which we start with patient
n and proceed iteratively towards the first patient.

Limitations for Trial Design

I This design is completely deterministic.

I Optimal designs which achieve the highest patient benefit suffer from the
lowest power.

Optimal Design using Dynamic Programming (DP)

We focus on modifications to the optimal design which aim at overcoming these
limitations without having a significant impact on the patient benefit criterion.

I A natural first step is to modify the optimal DP design by forcing actions to
be randomised.

I This helps to maintain blinding and reduce the risk of bias.

I We define the following actions so that each treatment has a probability of at
least 1− p of being allocated to each patient, where 0.5 ≤ p ≤ 1.

1.Action 1: A patient receives treatment A with probability p (and
treatment B with probability 1− p).

2.Action 2: A patient receives treatment B with probability p (and
treatment A with probability 1− p).

I We tried a range of values for p and suggest setting p = 0.90.

I This design markedly improves power and trades a small reduction in
optimality for randomisation.

Further Limitations

I There is a possibility that all patients may be allocated to only one treatment.

Randomised Dynamic Programming Design (RDP)

I We propose a constrained variant of the RDP design which ensures that we
always obtain at least Y observations from each treatment arm.

I Therefore, we can no longer end up with no observations on a treatment arm.

I To do this, we assign a large negative penalty to every terminal state that has
less than Y observations on a treatment arm.

I This causes the undesirable states to now be avoided.

I We tried several values for the lower bound Y and suggest setting Y = 0.15n.

Constrained RDP Design (CRDP)

We evaluate the CRDP design in several scenarios by simulating 10,000
replications and focusing on the following performance measures:

I Power; type I error rate; average bias of the treatment effect estimator; mean
squared error (MSE) and the percentage of patients allocated to the superior
treatment (% on sup).

...and we compare our proposed CRDP design to the following designs:

I Traditional fixed randomisation; randomised play-the-winner (RPW); Whittle
index policy (WI), DP and RDP.

Simulation Study

These figures correspond to n = 75, θA = 0.5 and θB ∈ (0.1, 0.9).

Figure 1: Power and type I error Figure 2: % on sup

Figure 3: Average bias Figure 4: MSE

Our proposed CRDP design produces very promising results:

1. The power is greatly improved upon relative to the other bandit designs
(Figure 1).

2. The % of patients allocated to the superior treatment is much higher than in
the traditional fixed and RPW designs (Figure 2).

3. The bias and MSE of the treatment effect estimator is greatly reduced
compared to the other bandit designs (Figures 3 and 4).

Such designs will be particularly useful for rare diseases in which a substantial
proportion of patients exhibiting the disease are included in the trial, and
therefore the priority is to treat these patients as effectively as possible.

Conclusions
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