Clinical Trial Design for Rare Diseases
using Bayesian Bandit Models
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Introduction & Motivation

» Consider a two-arm clinical trial with binary end points and a finite number of
patients, n.

» Suppose each treatment, A and B, has an unknown success probability, 64
and 0p, respectively, and each patient’s response is immediately available.

» The null and alternative hypotheses are formulated as
Hy: 0, = 0p versus H;: 0, # 03,

and we assume 64, 0 ~ Beta(l, 1) a priori.
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Objective: To design a clinical trial which identifies the superior treatment
(explores) whilst effectively treating the trial participants (exploits). This will

Kbe particularly useful in trials for rare diseases. B

» This is a natural application area for bandit models which seek to balance the
exploration versus exploitation trade-off to obtain an optimal allocation

policy.

» Bandit models are a type of response-adaptive design.

» Learning takes place during the trial (rather than just at the end as in the
traditional randomised controlled trial).
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Constrained RDP Desig

» We propose a constrained variant of the RDP design which ensures that we
always obtain at least Y observations from each treatment arm.

» T herefore, we can no longer end up with no observations on a treatment arm.

» To do this, we assign a large negative penalty to every terminal state that has
less than Y observations on a treatment arm.

» | his causes the undesirable states to now be avoided.

» We tried several values for the lower bound Y and suggest setting Y = 0.15n.

Simulation Stud

We evaluate the CRDP design in several scenarios by simulating 10,000
replications and focusing on the following performance measures:

» Power; type | error rate; average bias of the treatment effect estimator; mean
squared error (MSE) and the percentage of patients allocated to the superior
treatment (% on sup).

...and we compare our proposed CRDP design to the following designs:

» Traditional fixed randomisation; randomised play-the-winner (RPW); Whittle
index policy (WI), DP and RDP.

» T he optimality property, in terms of maximising the expected number of
patient successes, is the primary motivation behind implementing

These figures correspond to n =75, 64, = 0.5 and 05 € (0.1, 0.9).
bandit-based designs in clinical practice.
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Optimal Design using Dynamic Programming (DP
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» We use DP to obtain the optimal adaptive treatment allocation sequence.
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» The idea behind DP is a recurrence equation (the Bellman equation), which
relates the expected total reward at a given decision time to the distribution
of its possible values at the next decision time.
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» A natural first step is to modify the optimal DP design by forcing actions to
be randomised.
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Figure 3: Average bias Figure 4: MSE

» T his helps to maintain blinding and reduce the risk of bias.

» We define the following actions so that each treatment has a probability of at
least 1 — p of being allocated to each patient, where 0.5 < p <1.

Conclusions

Our proposed CRDP design produces very promising results:

/1. Action 1: A patient receives treatment A with probability p (and B 1. The power is greatly improved upon relative to the other bandit designs
treatment B with probability 1 — p). (Figure 1).

2. Action 2: A patient receives treatment B with probability p (and 2. The % of patients allocated to the superior treatment is much higher than in

 treatment A with probability 1 — p). ) the traditional fixed and RPW designs (Figure 2).

3. The bias and MSE of the treatment effect estimator is greatly reduced

» We tried a range of values for p and suggest setting p = 0.90. compared to the other bandit designs (Figures 3 and 4).

» T his design markedly improves power and trades a small reduction in
optimality for randomisation.
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Such designs will be particularly useful for rare diseases in which a substantial
proportion of patients exhibiting the disease are included in the trial, and

ktherefore the priority is to treat these patients as effectively as possible.

Further Limitations

/

» There is a possibility that all patients may be allocated to only one treatment.
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