Michal Valko, SequeL, Inria Lille - Nord Europe

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps

$$
T \ll N
$$

- extra information
- ratings are smooth on a graph
- main question: can we learn faster?

GETIING REAL

Let's be lazy and ignore the structure

Hactions
Multi-armed bandit problem!
Worst case regret (to the best fixed strategy) $R_{T}=\mathcal{O}(\sqrt{N T})$ How big is N? Number of movies on http://www.imdb.com/stats: 3,589,057

Problem: Too many actions!

LEARNING FASTER

$R_{T}=\mathcal{O}(\sqrt{N T})$

- Arm independence is too strong and unnecessary
- Replace N with something much smaller
- problem/instance/data dependent
- example: linear bandits N to D
- In this talk: Graph Bandits!
- sequential problems where actions are nodes on a graph
- find strategies that replace N with a smaller graph-dependent quantity

Alexandra Carpentier Universität Potsdam

Rémi Munos Google DeepMind

Branislav Kveton Adobe Research

Shipra Agrawal Columbia University

Gergely Neu
Universitat Pompeu Fabra

Tomáš Kocák
SequeL, Incia Lille graduating in 2016

Manjesh Hanawal Boston University

GRAPH BANDITS: GENERAL SETUP

Every round t the learner

- picksanode $I_{t} \in[N]$
- incursa loss $\ell_{t, l_{t}}$
- optional feedback

The performance is total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

1. loss

Specific setups differ in 2. feedback
3. guarantees

SPECIFIC GRAPH BANDIT SETTINGS

SPECTRAL BANDITS

exploiting smoothness of rewards on graphs

Assumptions

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \nRightarrow neighboring movies.

Desiderata

An algorithm useful in the case $T \ll N$!

Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

- $\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathbf{L}=\mathbf{Q} \wedge \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathbf{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathbf{L}.
- Columns of \mathbf{Q} form a basis.

$$
\frac{1}{2} \sum_{i, j \leq n} w_{i, j}\left(f_{i}-f_{j}\right)^{2}
$$

- $\boldsymbol{\alpha}^{*}$: Unique vector such that $\mathbf{Q} \boldsymbol{\alpha}^{*}=\mathbf{f}$ Note: $\mathbf{Q}^{\top} \mathbf{f}=\boldsymbol{\alpha}^{*}$

$$
S_{G}(\mathbf{f})=\mathbf{f}^{\top} \mathbf{L} \mathbf{f}=\mathbf{f}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{f}=\boldsymbol{\alpha}^{* \top} \boldsymbol{\Lambda} \boldsymbol{\alpha}^{*}=\left\|\boldsymbol{\alpha}^{*}\right\|_{\boldsymbol{\Lambda}}^{2}=\sum_{i=1}^{N} \lambda_{i}\left(\alpha_{i}^{*}\right)^{2}
$$

Smoothness and regularization: Small value of
(a) $S_{G}(\mathbf{f})$
(b) Λ norm of $\boldsymbol{\alpha}^{*}$
(c) α_{i}^{*} for large λ_{i}

SPECTRAL BANDIT: LEARNING SETTING

Learning setting for a bandit algorithm π

- In each time t step choose a node $\pi(t)$.
- the $\pi(t)$-th row $\mathbf{x}_{\pi(t)}$ of the matrix \mathbf{Q} corresponds to the arm $\pi(t)$.
- Obtain noisy reward $r_{t}=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t} . \quad$ Note: $\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}=f_{\pi(t)}$
- ε_{t} is R-sub-Gaussian noise. $\quad \forall \xi \in \mathbb{R}, \mathbb{E}\left[e^{\xi_{\varepsilon}}\right] \leq \exp \left(\xi^{2} R^{2} / 2\right)$
- Minimize cumulative regret

$$
R_{T}=T \max _{a}\left(\mathbf{x}_{a}^{\top} \boldsymbol{\alpha}^{*}\right)-\sum_{t=1}^{T} \mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}
$$

Can we just use linear bandits?

LINEAR VS. SPECTRAL BANDITS

- Linear bandit algorithms
- LinUCB
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}.
Number of actions, e.g., all possible movies \rightarrow HUGE!

- Spectral bandit algorithms
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- Operations per step: $D^{2} N$
- SpectralTS
(Kocák et al., AAAI 2014)
- Regret bound $\approx d \sqrt{T \ln N}$
- Operations per step: $D^{2}+D N$

Note: d is effective dimension, usually much smaller than D.

SPECTRAL BANDITS - EFFECTIVE DIMENSION

- Effective dimension: Largest d such that

$$
(d-1) \lambda_{d} \leq \frac{T}{\log (1+T / \lambda)} .
$$

- Function of time horizon and graph properties
- $\lambda_{i}: i$-th smallest eigenvalue of $\boldsymbol{\Lambda}$.
- λ : Regularization parameter of the algorithm.

Properties:

- d is small when the coefficients λ_{i} grow rapidly above time.
- d is related to the number of "non-negligible" dimensions.
- Usually d is much smaller than D in real world graphs.
- Can be computed beforehand.

$$
d \ll D
$$

Note: In our setting $T<N=D$.

Given a vector of weights $\boldsymbol{\alpha}$, we define its $\boldsymbol{\Lambda}$ norm as

$$
\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}=\sqrt{\sum_{k=1}^{N} \lambda_{k} \alpha_{k}^{2}}=\sqrt{\boldsymbol{\alpha}^{\top} \boldsymbol{\Lambda} \boldsymbol{\alpha}}
$$

and fit the ratings r_{v} with a (regularized) least-squares estimate

$$
\widehat{\boldsymbol{\alpha}}_{t}=\underset{\boldsymbol{\alpha}}{\arg \min }\left(\sum_{v=1}^{t}\left[\left\langle\mathbf{x}_{v}, \boldsymbol{\alpha}\right\rangle-r_{v}\right]^{2}+\|\boldsymbol{\alpha}\|_{\Lambda}^{2}\right) .
$$

$\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}$ is a penalty for non-smooth combinations of eigenvectors.

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathbf{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathbf{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\widehat{\alpha}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \widehat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \widehat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{\mathbf{a}}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SPECTRALUCB REGRET BOUND

- d: Effective dimension.
- λ : Minimal eigenvalue of $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}_{\mathbf{L}}+\lambda \mathbf{I}$.
- C : Smoothness upper bound, $\left\|\boldsymbol{\alpha}^{*}\right\|_{\Lambda} \leq C$.
- $\mathbf{x}_{i}^{\top} \boldsymbol{\alpha}^{*} \in[-1,1]$ for all i.

The cumulative regret R_{T} of SpectralUCB is with probability $1-\delta$ bounded as

$$
R_{T} \leq\left(8 R \sqrt{d \ln \frac{\lambda+T}{\lambda}+2 \ln \frac{1}{\delta}}+4 C+4\right) \sqrt{d T \ln \frac{\lambda+T}{\lambda}} .
$$

$$
R_{T} \approx d \sqrt{T \ln T}
$$

Movielens: Cumulative regret for randomly sampled users. T = 100

GRAPH BANDITS WITH SIDE OBSERVATIONS
 exploiting free observations from neighbouring nodes

SIDE OBSERVATIONS: UNDIRECTED

Example 1: undirected observations

SIDE OBSERVATIONS: DIRECTED

Example 2: Directed observation

SIDE OBSERVATION: ADVERSARIAL SETIING

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed

SIDE OBSERVATIONS－AN INTERMEDIATE GAME Cnででáa

Full Information setting

－Pick an action（egg．action A）
－Observe losses of all actions
－$R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})$

Bandit setting

－Pick an action（e．g．action A）
－Observe loss of a chosen action
－$R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})$

（F）
（D）

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know the graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know the graph
- Independence set of α actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Exp3-IX - Kocák et. al

- No need to know graph
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

EXP3-IX: IMPLICIT EXPLORATION

```
Algorithm 1 ExP3-IX
    Input: Set of actions \(\mathcal{S}=[d]\),
        parameters \(\gamma_{t} \in(0,1), \eta_{t}>0\) for \(t \in[T]\).
    for \(t=1\) to \(T\) do
        \(w_{t, i} \leftarrow(1 / d) \exp \left(-\eta_{t} \widehat{L}_{t-1, i}\right)\) for \(i \in[d]\)
        An adversary privately chooses losses \(\ell_{t, i}\)
        for \(i \in[d]\) and generates a graph \(G_{t}\)
        \(W_{t} \leftarrow \sum_{i=1}^{d} w_{t, i}\)
        \(p_{t, i} \leftarrow w_{t, i} / W_{t}\)
        Choose \(I_{t} \sim \boldsymbol{p}_{t}=\left(p_{t, 1}, \ldots, p_{t, d}\right)\)
        Observe graph \(G_{t}\)
        Observe pairs \(\left\{i, \ell_{t, i}\right\}\) for \(\left(I_{t} \rightarrow i\right) \in G_{t}\)
        \(o_{t, i} \leftarrow \sum_{(j \rightarrow i) \in G_{t}} p_{t, j}\) for \(i \in[d]\)
        \(\hat{\ell}_{t, i} \leftarrow \frac{\ell_{t, i}}{o_{t, i}+\gamma_{t}} \mathbb{1}_{\left\{\left(I_{t} \rightarrow i\right) \in G_{t}\right\}}\) for \(i \in[d]\)
    end for
```

 Benefits of the implicit exploration
 no need to know the graph before
 - no need to estimate dominating set
 - no need for doubling trick
 no need for aggregation
 \(R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \ln N})\)
 Optimistic bias for the loss estimates
$\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}$

COMPLEX ACTIONS: NEWS FEEDS

- Play m out of N nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

COMPLEX GRAPH ACTIONS

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ from all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

$$
R_{T}=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\tilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

GRAPH BANDITS WITH NOISY SIDE OBSERVATIONS
 exploiting side observations that can be perturbed by certain level of noise

NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

- reliable: use as exact
- unreliable: rubbish then we can improve over pure bandit setting!

2) Treating noisy observation induces bias

What can we hope for?
$\widetilde{\mathcal{O}}(\sqrt{1 T}) \leq \widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T}) \leq \widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star} T}\right) \leq \widetilde{\mathcal{O}}(\sqrt{N T})$
effective independence number
Can we learn without knowing either ε or α^{*} ?

Parameters:

set of arms $[N]$, number of rounds T.
For all $t=1,2, \ldots, T$ repeat

1. The environment picks a loss function ℓ_{t} : $[N] \rightarrow[0,1]$ and a directed weighted graph G_{t} with edge weights in $[0,1]$.
2. Based on its previous observations (and possibly some source of randomness), the learner picks an action $I_{t} \in[N]$.
3. The learner suffers loss $\ell_{t, I_{t}}$.
4. The learner observes G_{t} and the feedback

$$
c_{t, i}=s_{t,\left(I_{t}, i\right)} \cdot \ell_{t, i}+\left(1-s_{t,\left(I_{t}, i\right)}\right) \cdot \xi_{t, i}
$$

for every arm $i \in[N]$.

The weights s are revealed
The noise is bounded $\xi \leq R$

NOISY SIDE OBSERVATIONS
\qquad

G: weighted graph

- $G(\varepsilon)$: graph with only $\geq \varepsilon$ edges
- $\alpha(\varepsilon)$: independence number of $G(\varepsilon)$
- effective independence number of G :

$$
\alpha^{*}=\min _{\varepsilon \in[0,1]} \frac{\alpha(\varepsilon)}{\varepsilon^{2}}
$$

Since $\alpha^{*} \leq \alpha(1) / 1 \leq N$
incorporating noisy observations does not hurt

$$
\widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star} T}\right) \leq \widetilde{\mathcal{O}}(\sqrt{N T})
$$

But how much does it help?

EMPIRICAL $\boldsymbol{\alpha}^{*}$ FOR SOME GRAPHS

- $k \times k$ grid graphs with weights $1 /\left(1+\mathrm{dij}^{2}\right)$ have α * empirically bounded by a constant
- special case: if $s_{i j}$ is either 0 or ε than $\alpha^{*}=\alpha / \varepsilon^{2}$
- For this special case, there is a minimax regret $\Theta(\sqrt{ }(\alpha T) / \varepsilon)$ by Wu, György, Szepesvári: Online Learning with Gaussian Payoffs and Side Observations, NIPS 2015.

α^{*} FOR RANDOM GRAPHS WITH IID WEIGHTS

(a) $U(0,1)$ weights

(b) $U\left(\frac{1}{2}, 1\right)$ weights

(c) $U\left(0, \frac{1}{2}\right)$ weights

Algorithm 1 Algorithm template: Exp3 (Auer et al., 2002a)

Initialization: $\widehat{L}_{0, i}=0$ for all $i \in[N]$.
2: for $t=1$ to T do
3: \quad Set η_{t} and γ_{t}.
4: Construct the probability distribution \boldsymbol{p}_{t} with.

$$
p_{t, i}=\frac{\exp \left(-\eta_{t} \widehat{L}_{t-1, i}\right)}{\sum_{j=1}^{N} \exp \left(-\eta_{t} \widehat{L}_{t-1, j}\right)} .
$$

5: Play random arm I_{t} according to \boldsymbol{p}_{t}.
6: Incur loss $\ell_{t, I_{t}}$.
7: \quad Observe $c_{t, i}=s_{t,\left(I_{t}, i\right)} \ell_{t, i}+\left(1-s_{t,\left(I_{t}, i\right)}\right) \xi_{t, i}$ for all $i \in[N]$.
Observe graph G_{t}.
9: Construct loss estimates $\widehat{\ell}_{t, i}$.
10: \quad Set $\widehat{L}_{t, i}=\widehat{L}_{t-1, i}+\widehat{\ell}_{t, i}$.
end for

Naïve estimate $\quad R_{T}=$?

$$
\hat{\ell}_{t, i}^{(\mathrm{B})}=\frac{c_{t, i}}{\sum_{j=1}^{N} p_{t, j} s_{t,(j, i)}+\gamma_{t}}
$$

Threshold estimate $\quad R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star}} T\right)$

$$
\hat{\ell}_{t, i}^{(\mathrm{T})}=\frac{c_{t, i} \mathbb{I}_{\left\{s_{t,\left(I_{t}, i\right)} \geq \varepsilon_{t}\right\}}}{\sum_{j=1}^{N} p_{t, j} s_{t,(j, i)} \mathbb{I}_{\left\{s_{t,(j, i)} \geq \varepsilon_{t}\right\}}+\gamma_{t}}
$$

WIX estimate

$$
R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star} T}\right)
$$

$$
\widehat{\ell}_{t, i}=\frac{s_{t,\left(I_{t}, i\right)} \cdot c_{t, i}}{\sum_{j=1}^{N} p_{t, j} s_{t,(j, i)}^{2}+\gamma_{t}}
$$

EMPIRICAL RESULTS FOR 5X5 GRID

- nodes: 25 actions on 5×5 grid
- weight: $\min \left\{3 / d^{2}, 1\right\}$
- dis the euclidean distance
- loss: alternating random walks

INFLUENCE MAXIMISATION
 looking for the influential nodes while exploring the graph

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown $\mathbf{M}=\left(p_{i, j}\right)_{i, j}$ symmetric matrix of influences :

In each time step $t=1, \ldots, T$

- learners picks a node k_{t}
- set $S_{k_{t}, t}$ of influenced nodes is revealed

Select influential people = Find the strategy maximising

$$
L_{T}=\sum_{t=1}^{T}\left|S_{k_{t}, t}\right|
$$

The number of expected influences of node k is by definition

$$
r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq N} p_{k, j}
$$

Oracle strategy always selects the best

$$
k^{*}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{T}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } \operatorname{Tr}_{k}
$$

Expected regret of any adaptive, non-oracle strategy unaware of M

$$
\mathbb{E}\left[R_{T}\right]=\mathbb{E}\left[L_{T}^{*}\right]-\mathbb{E}\left[L_{T}\right]
$$

Ignoring the structure again? The best we can do is $\widetilde{\mathcal{O}}\left(\sqrt{r_{*} T N}\right)$
We aim to do better: $R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{r_{*} T D_{*}}\right)$
D_{*} - detectable dimension dependent on T and the structure

- good case: star-shaped graph can have $D_{*}=1$
- bad case: a graph with many small cliques.
- the worst case: all nodes are disconnected except 2

Idea of the algorithm:

- exploration phase: sample randomly to find out $\approx D_{*}$ nodes
- bandit case: use any bandit algorithm on these nodes

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Albert. Middle left: Facebook. Middle right: Enron. Right: Gnutella.

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

- Enron and Facebook vs. Gnutella (decentralised)

CONCLUSION AND NEW DIRECTIONS

Graph Bandits

- specific way of exploiting the problem structure to learn faster
- different settings
- smooth rewards - spectral bandits, cheap bandits
- (noisy) side observations - informed bandits
- influence maximisation - revealing bandits

New directions

- graph generators (BA, ER, ...)
- learning (with) communities - SBM
- crawling strategies
- reducing assumption on graph knowledge

Multi-armed Bandit Workshop 2016 at STOR-i, Lancaster University, UK Graph Bandits: Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@innia.fr

