
GRAPH BANDITS
Michal Valko, SequeL, Inria Lille - Nord Europe

2

3

4

Example of a graph bandit problem

movie recommendation

recommend movies to a single user

goal: maximise the sum of the ratings  
(minimise regret)

good prediction after just a few steps

extra information

ratings are smooth on a graph

main question: can we learn faster?

T ⌧ N

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

5

GETTING REAL

Let’s be lazy and ignore the structure

Multi-armed bandit problem!

Worst case regret (to the best fixed strategy)

How big is N? Number of movies on http://www.imdb.com/stats: 3,589,057

Problem: Too many actions!

#actions

#rounds

6

http://www.imdb.com/stats

LEARNING FASTER

Arm independence is too strong and unnecessary

Replace N with something much smaller

problem/instance/data dependent

example: linear bandits N to D

In this talk: Graph Bandits!

sequential problems where actions are nodes on a graph

find strategies that replace N with a smaller graph-dependent quantity

#actions

#rounds

#dimensions

7

JOINT WORK WITH…

8

Alexandra Carpentier  
Universität Potsdam

Branislav Kveton  
Adobe Research

Gergely Neu  
Universitat Pompeu Fabra

Manjesh Hanawal  
Boston University

Rémi Munos  
Google DeepMind

Shipra Agrawal  
Columbia University

Venkatesh Saligrama  
Boston University

Tomáš Kocák  
SequeL, Inria Lille

graduating in 2016

GRAPH BANDITS: GENERAL SETUP

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Every round t the learner

picks a node

incurs a loss

optional feedback

The performance is total expected regret

Specific setups differ in

1. loss

2. feedback

3. guarantees
9

SPECIFIC GRAPH BANDIT SETTINGS

smoothness spectral bandits
side observations on graphs

influence maximisation revealing bandits

Revealing Graph bandits: Influence Maximization
Ignoring the structure again? The best we can do is eO �p

r⇤TN
�

We aim to do better: RT = eO �p
r⇤TD⇤

�
D⇤ - detectable dimension dependent on T and the structureI good case: star-shaped graph can have D⇤ = 1I bad case: a graph with many small cliques.I the worst case: all nodes are disconnected except 2Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

8

/

6

6

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=
1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

Spectral Bandits Summary
I Spectral bandit setting (smooth graph functions).I SpectralUCB

I Regret bound
RT = eO

⇣

d

p
T ln

T

⌘

I SpectralTS
I Regret bound

RT = eO
⇣

d

p
T ln

N

⌘

I Computationally more e�cient.I SpectralEliminator
I Regret bound

RT = eO
⇣p

d

T ln
T

⌘

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with e�ective dimension

d ⌧
D.

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

6

/

4

0

#relevant
eigenvectors

detectable
dimension

independence
number

noisy side
observations

on graphs

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=
1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵?T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

effective
independence number

10

SPECTRAL
BANDITS

exploiting smoothness of
rewards on graphs

MV, Munos, Kveton, Kocák: Spectral Bandits for Smooth Graph Functions, ICML 2014

Kocák, MV, Munos, Agrawal: Spectral Thompson Sampling, AAAI 2014

Hanawal, Saligrama, MV, Munos: Cheap Bandits, ICML 2015

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

SPECTRAL BANDITS

Online Decision Making on Graphs

Movie recommendation: (in each time step)
I Recommend movies to a single user.
I Good prediction after a few steps (T ⌧N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G) ! R.
I Function f is smooth on a graph.
I Neighboring movies) similar preferences.
I Similar preferences 6) neighboring movies.

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

Michal Valko – Graphs in Machine Learning SequeL - 8/40

Let’s be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically

Watch all the movies and then I tell you which one you like

What do we need for movie recommendation?

An algorithm useful in the case T ⌧ N!

Exploiting the structure is a must!

Michal Valko – Graphs in Machine Learning SequeL - 10/40

Assumptions

Desiderata

12

FLIXSTER DATASmooth graph functions: Flixster eigenvectors

−1 0 1
−0.2

0

0.2
Eigenvector 1

−1 0 1
−0.2

0

0.2
Eigenvector 2

−1 0 1
−0.2

0

0.2
Eigenvector 3

−1 0 1
−0.2

0

0.2
Eigenvector 4

−1 0 1
−0.2

0

0.2
Eigenvector 5

−1 0 1
−0.2

0

0.2
Eigenvector 6

−1 0 1
−0.2

0

0.2
Eigenvector 7

−1 0 1
−0.2

0

0.2
Eigenvector 8

−1 0 1
−0.2

0

0.2
Eigenvector 9Eigenvectors from the Flixster data corresponding to the smallest

few eigenvalues of the graph Laplacian projected onto the first
principal component of data. Colors indicate the values.

Michal Valko – Graphs in Machine Learning SequeL - 12/40

13

SMOOTH GRAPH FUNCTIONS
Recap: Smooth graph functions

I f = (f
1

, . . . , fN)T: Vector of function values.
I Let L = Q⇤QT be the eigendecomposition of the Laplacian.

I Diagonal matrix ⇤ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I ↵⇤: Unique vector such that Q↵⇤ = f Note: QTf = ↵⇤

SG(f) = fTLf = fTQ⇤QTf = ↵⇤T⇤↵⇤ = k↵⇤k2

⇤ =
N
X

i=1

�i(↵
⇤
i)

2

Smoothness and regularization: Small value of

(a) SG(f) (b) ⇤ norm of ↵⇤ (c) ↵⇤
i for large �i

Michal Valko – Graphs in Machine Learning SequeL - 11/40

14

Properties of Graph Laplacian
The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2
P

i ,jn wi ,j(fi � fj)2.
Therefore, f is constant on each connected component. If there are
k components, then L is k-block-diagonal:

L =

2

6664

L1
L2

. . .
Lk

3

7775

For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is an eigenpair, hence the claim.
Michal Valko – Graphs in Machine Learning SequeL - 23/1

SPECTRAL BANDIT: LEARNING SETTING
Online Learning Setting - Bandit Problem

Learning setting for a bandit algorithm ⇡

I In each time t step choose a node ⇡(t).
I the ⇡(t)-th row x⇡(t) of the matrix Q corresponds to the arm ⇡(t).
I Obtain noisy reward rt = xT

⇡(t)↵
⇤ + "t . Note: xT

⇡(t)↵
⇤ = f⇡(t)

I "t is R-sub-Gaussian noise. 8⇠ 2 R, E[e⇠"t]  exp
�
⇠2

R

2/2
�

I Minimize cumulative regret

RT = T max
a

(xT

a↵
⇤)�

T
X

t=1

xT

⇡(t)↵
⇤.

What is a good result?

Can’t we just use linear bandits?

Michal Valko – Graphs in Machine Learning SequeL - 13/40

Can we just use linear bandits?

15

LINEAR VS. SPECTRAL BANDITS
Online Decision Making on Graphs: Smoothness

I Linear bandit algorithms
I LinUCB (Li et al., 2010)

I Regret bound ⇡ D

p
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ⇡ D

p
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies ! HUGE!

I Spectral bandit algorithms
I SpectralUCB (Valko et al., ICML 2014)

I Regret bound ⇡ d

p
T ln T

I Operations per step: D

2

N

I SpectralTS (Kocák et al., AAAI 2014)
I Regret bound ⇡ d

p
T ln N

I Operations per step: D

2 + DN

Note: d is e�ective dimension, usually much smaller than D.

Michal Valko – Graphs in Machine Learning SequeL - 14/40

16

SPECTRAL BANDITS - EFFECTIVE DIMENSION
E�ective dimension

I E�ective dimension: Largest d such that

(d � 1)�d  T

log(1 + T/�)
.

I Function of time horizon and graph properties
I �i : i-th smallest eigenvalue of ⇤.
I �: Regularization parameter of the algorithm.

Properties:
I

d is small when the coe�cients �i grow rapidly above time.
I

d is related to the number of “non-negligible” dimensions.
I Usually d is much smaller than D in real world graphs.
I Can be computed beforehand.

Michal Valko – Graphs in Machine Learning SequeL - 15/40

17

SPECTRAL BANDITS - EFFECTIVE DIMENSIONE�ective dimension vs. Ambient dimension

0 50 100 150 200 250 300 350 400 450 500
1

2

3

4

5

6

7

time T

ef
fe

ct
iv

e
di

m
en

st
io

n

Barabasi−Albert graph N=500

500 1000 1500 2000 2500 3000 3500 4000 4500
1

2

3

4

5

6

7

8

9

10

11

time T

ef
fe

ct
iv

e
di

m
en

st
io

n

Flixster graph: N=4546

d ⌧ D
Note: In our setting T < N = D.

Michal Valko – Graphs in Machine Learning SequeL - 16/40

18

SPECTRALUCBSpectralUCB

Given a vector of weights ↵, we define its ⇤ norm as

k↵k⇤ =

v

u

u

t

N
X

k=1

�k↵2

k =
p
↵T⇤↵,

and fit the ratings rv with a (regularized) least-squares estimate

b↵t = arg min
↵

 t
X

v=1

[hxv ,↵i � rv]
2 + k↵k2

⇤

!

.

k↵k⇤ is a penalty for non-smooth combinations of eigenvectors.

Michal Valko – Graphs in Machine Learning SequeL - 18/40

19

SPECTRALUCB PSEUDOCODESpectralUCB

1: Input:
2: N, T , {⇤L,Q}, �, �, R, C

3: Run:
4: ⇤ ⇤L + �I
5: d max{d : (d � 1)�d  T/ ln(1 + T/�)}
6: for t = 1 to T do
7: Update the basis coe�cients b↵:
8: Xt [x⇡(1), . . . , x⇡(t�1)]

T

9: r [r
1

, . . . , rt�1

]T

10: Vt XtXT

t + ⇤
11: b↵t V�1

t XT

t r
12: ct 2R

p
d ln(1 + t/�) + 2 ln(1/�) + C

13: ⇡(t) arg maxa

⇣
xT

a b↵+ ctkxakV�1

t

⌘

14: Observe the reward rt

15: end for

Michal Valko – Graphs in Machine Learning SequeL - 19/4020

SPECTRALUCB REGRET BOUND
SpectralUCB: Regret Bound

I
d : E�ective dimension.

I �: Minimal eigenvalue of ⇤ = ⇤L + �I.
I

C : Smoothness upper bound, k↵⇤k⇤  C .
I xT

i ↵
⇤ 2 [�1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1 � �
bounded as

RT 

8R

r

d ln �+ T

�
+ 2 ln 1

�
+ 4C + 4

!

r

dT ln �+ T

�
.

R

T

⇡ d

p
T ln T

Michal Valko – Graphs in Machine Learning SequeL - 22/40

21

EVALUATION

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

time T

cu
m

ul
at

iv
e

re
gr

et

Barabasi−Albert N=250, basis size=3, effective d=1

SpectralEliminator
SpectralUCB
LinUCB

0

50

100

150

200

250
Movielens: Cumulative regret for randomly sampled users. T = 100

cu
m

ul
at

iv
e

re
gr

et

24
34

16
89

23
35

97
0

65
9

92
0

17
22

24
45

85
6

11
86

25
39

18
11

29
20

60
0

24
37

19
91

73
4

14
02

11
76

17
66

23
58

31
0

24
20

24
77

10
45

12
67

16
86

20
64

21
87

22
32

11
46

12
65

28
17

16
88

25
03

81
4

18
33

17
33

28
38

25
3

14
74

15
37

26
6

26
65

26
05

12
93

23
03

43
8

18
26

76
8

SpectralUCB
LinUCB

22

GRAPH
BANDITS  

WITH SIDE
OBSERVATIONS
exploiting free observations from

neighbouring nodes

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration  
in bandit problems with side observations, NIPS 2014

SIDE OBSERVATIONS: UNDIRECTEDGraph bandits: Side observations

Example 1: undirected observations

Michal Valko – Graphs in Machine Learning SequeL - 8/66

Graph bandits: Side observations

Example 1: Graph Representation

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 9/66

24

SIDE OBSERVATIONS: DIRECTEDGraph bandits: Side observations
Example 2: Directed observation

Michal Valko – Graphs in Machine Learning SequeL - 10/66

Graph bandits: Side observations

Example 2

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 11/66

25

SIDE OBSERVATION: ADVERSARIAL SETTINGGraph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/66

26

SIDE OBSERVATIONS - AN INTERMEDIATE GAMEGraph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 13/66

27

UNDIRECTED GRAPHSGraph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 14/66

28

DIRECTED GRAPHSGraph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T)

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 15/66

29

EXP3-IX: IMPLICIT EXPLORATION

2.2 Performance guarantees for EXP3-IX
Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],
2: parameters �

t

2 (0, 1), ⌘
t

> 0 for t 2 [T].
3: for t = 1 to T do

4: w
t,i

 (1/d) exp (�⌘
t

bL
t�1,i

) for i 2 [d]
5: An adversary privately chooses losses `

t,i

for i 2 [d] and generates a graph G
t

6: W
t

 P
d

i=1

w
t,i

7: p
t,i

 w
t,i

/W
t

8: Choose I
t

⇠ p
t

= (p
t,1

, . . . , p
t,d

)

9: Observe graph G
t

10: Observe pairs {i, `
t,i

} for (I
t

! i) 2 G
t

11: o
t,i

 P
(j!i)2Gt

p
t,j

for i 2 [d]

12: ˆ`
t,i

 `t,i

ot,i+�t
1{(It!i)2Gt} for i 2 [d]

13: end for

Our analysis follows the footsteps of Auer et al.
[3] and Györfi and Ottucsák [9], who provide
an improved analysis of the adaptive learning-
rate rule proposed by Auer et al. [4]. However,
a technical subtlety will force us to proceed a
little differently than these standard proofs: for
achieving the tightest possible bounds and the
most efficient algorithm, we need to tune our
learning rates according to some random quan-
tities that depend on the performance of EXP3-
IX. In fact, the key quantities in our analysis are
the terms

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

,

which depend on the interaction history F
t�1

for all t. Our theorem below gives the performance
guarantee for EXP3-IX using a parameter setting adaptive to the values of Q

t

. A full proof of the
theorem is given in the supplementary material.

Theorem 1. Setting ⌘
t

= �
t

=

q
(log d)/(d+

P
t�1

s=1

Q
s

) , the regret of EXP3-IX satisfies

R
T

 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
. (3)

Proof sketch. Following the proof of Lemma 1 in Györfi and Ottucsák [9], we can prove that
dX

i=1

p
t,i

ˆ`
t,i

 ⌘
t

2

dX

i=1

p
t,i

⇣
ˆ`
t,i

⌘
2

+

✓
logW

t

⌘
t

� logW
t+1

⌘
t+1

◆
. (4)

Taking conditional expectations, using Equation (2) and summing up both sides, we get
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

⇣⌘
t

2

+ �
t

⌘
Q

t

+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Using Lemma 3.5 of Auer et al. [4] and plugging in ⌘
t

and �
t

, this becomes
TX

t=1

dX

i=1

p
t,i

`
t,i

 3

r⇣
d+

P
T

t=1

Q
t

⌘
log d+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Taking expectations on both sides, the second term on the right hand side telescopes into

E

logW

1

⌘
1

� logW
T+1

⌘
T+1

�
 E


� logw

T+1,j

⌘
T+1

�
= E


log d

⌘
T+1

�
+ E

h
ˆL
T,j

i

for any j 2 [d], giving the desired result as
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

`
t,j

+ 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
,

where we used the definition of ⌘
T

and the optimistic property of the loss estimates.

Setting m = 1 and c = �
t

in Lemma 1, gives the following deterministic upper bound on each Q
t

.
Lemma 2. For all t 2 [T],

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

 2↵
t

log

✓
1 +

dd2/�
t

e+ d

↵
t

◆
+ 2.

5

Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

ˆ̀t,i =

(
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i
ot,i

ot,i + 0(1 � ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

(
`t,i/(ot,i + �) if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i

ot,i + �
ot,i + 0(1 � ot,i) = `t,i � `t,i

�

ot,i + �
 `t,i

No mixing!

Michal Valko – Graphs in Machine Learning SequeL - 20/67

Optimistic bias for the loss estimates

Benefits of the implicit exploration

no need to know the graph before

no need to estimate dominating set

no need for doubling trick

no need for aggregation

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

Michal Valko – Graphs in Machine Learning SequeL - 27/67

30

COMPLEX ACTIONS: NEWS FEEDS
Graph bandits: Complex actions

Example: New feeds

content1 content2

user1 user2 user3 userm

news feed1 news feed2 news feed3

user1

user2

user3

user4

content2

content2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

em,1 em,2 em,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning SequeL - 29/6631

COMPLEX GRAPH ACTIONSGraph bandits: Complex actions

A B C

DEF

G H I

JKL

I Play action Vt 2 S ⇢ {0, 1}N , kvk
1

 m from all v 2 S
I Obtain losses VT

t `t

I Observe additional losses according to the graph

Michal Valko – Graphs in Machine Learning SequeL - 30/66

Graph bandits: Complex actions

FPL-IX - regret bound

RT = eO
0

@m3/2

vuut
TX

t=1

↵t

1

A = eO
⇣

m3/2

p
↵T

⌘

Michal Valko – Graphs in Machine Learning SequeL - 32/66

32

GRAPH
BANDITS WITH

NOISY SIDE
OBSERVATIONS
exploiting side observations that can

be perturbed by certain level of noise

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016 (to appear)

NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

reliable: use as exact

unreliable: rubbish

then we can improve over pure bandit setting!

2) Treating noisy observation induces bias

What can we hope for?

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Can we learn without knowing either ε or α* ?

� "

� "

� "

� "

< "

� "

34

effective independence number

PROTOCOL FOR NOISY OBSERVATIONS
Manuscript under review by AISTATS 2016

are corrupted by noise irrespective of the decisions
of the learner (see, e.g., Cesa-Bianchi et al., 2010).
Such settings do not pose an exploration-exploitation
dilemma to the learner and is thus are not relevant to
our goals.2

2 Background

Let us now give the formal definition of our learning
problem. We consider a sequential decision-making
problem where a learner and an environment inter-
act in the following way (see also Figure 1). In every
round t 2 [T] = {1, 2, . . . , T}, the environment selects
a weighted graph Gt with N nodes and a loss function
`t : [N] ! [0, 1] where `t,i is the loss associated with
arm i. The weight of each arc i ! j in Gt is denoted
as st,(i,j) and assumed to lie in [0, 1]. Following the
environment’s move, the learner selects an action (or
arm) It 2 [N] and incurs the loss `t,It . Finally, the
learner also observes Gt and the feedback

ct,i = st,(It,i) · `t,i +
�
1� st,(It,i)

� · ⇠t,i
for every arm i, where ⇠t,i is the observation noise.
We assume that each ⇠t,i is zero-mean, satisfies |⇠t,i| 
R for some known constant R � 0, and is generated
independently of all other noise terms and the history
of the process3. The interaction history between the
learner and the environment up to the end of round t

is captured by the sigma-algebra Ft. In this work,
we consider adaptive (or non-oblivious) environments
that are allowed to choose `t and Gt in full knowledge
of the history Ft�1. We also assume that all graphs Gt

are such that st,(i,i) = 1 for all i, that is, the learner
always observes its own loss `t,It without corruption.

The goal of the learner is to choose its actions so as to
ensure that its cumulative loss grows as slowly as pos-
sible. As traditional in the online learning literature
(Cesa-Bianchi and Lugosi, 2006), we measure the per-
formance of the learner in terms of the (total expected)
regret defined as the gap between the expected loss of
the player and the expected loss of the best fixed-arm
policy:

RT = max
i2[N]

E
"

TX

t=1

`t,It �
TX

t=1

`t,i

#
.

2
In fact, it can be shown by the techniques of Devroye

et al. (2013) that in the setting of online learning with

finite actions and observations corrupted by the same level

of i.i.d. noise, the simplest possible strategy of following

the leader gives near-optimal guarantees.

3
We are mainly interested in the setting where R =

⇥(1), that is, we are neither in the easy case where R is

close to zero or the hard one where it may be as large as

⌦(

p
T)

Parameters:
set of arms [N], number of rounds T .

For all t = 1, 2, . . . , T repeat

1. The environment picks a loss function `t :
[N] ! [0, 1] and a directed weighted graph
Gt with edge weights in [0, 1].

2. Based on its previous observations (and pos-
sibly some source of randomness), the learner
picks an action It 2 [N].

3. The learner su↵ers loss `t,It .

4. The learner observes Gt and the feedback

ct,i = st,(It,i) · `t,i +
�
1� st,(It,i)

� · ⇠t,i
for every arm i 2 [N].

Figure 1: The protocol of online learning with noisy
observations.

In this paper, we are interested in constructing algo-
rithms for the learner that guarantees a tight upper
bound on the regret. Before proposing our algorithm,
a few comments are in order. First, notice that our
framework technically contains the settings of Mannor
and Shamir (2011) and Alon et al. (2013) as special
cases where the edge weights are chosen from {0, 1}: in
this situation, our framework suggests that the learner
either gets perfect side-observations or just zero-mean
noise, which can be safely ignored by the learner. Also
notice that since we assume st,(i,i) = 1 for all i, our
problem is not harder for the learner than the stan-
dard multi-armed bandit problem. Indeed, thanks to
this property, the learner could simply ignore all side-
observations and run a bandit algorithm such as Exp3
of Auer et al. (2002a) that guarantees a regret bound
of O(

p
NT logN).

3 Algorithms and main result

This section presents our main contribution: a learning
algorithm with strong theoretical performance guar-
antees for the setting described in the previous sec-
tion. As the intuitions underlying our algorithm are
rather intricate, we will proceed gradually: we first
identify the main challenges of constructing learning
algorithms for our setting, then o↵er a solution that
overcomes these di�culties in an e�cient manner.

A central concept in our performance guarantees is a
new graph property that we call e↵ective independence
number, defined as follows:

Definition 1. Let G be a weighted directed graph with
N nodes and edge weights bounded in [0, 1]. For all

Nothing is revealed to the learner

The weights s are revealed

The noise is bounded ξ≤R

35

NOISY SIDE OBSERVATIONS

� "

� "

� "

< "

� "

� "

G: weighted graph

G(ε): graph with only ≥ε edges

α(ε): independence number of G(ε)

effective independence number of G:

Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

Manuscript under review by AISTATS 2016

Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Since

incorporating noisy observations does not hurt

But how much does it help?

36

EMPIRICAL 𝛂* FOR SOME GRAPHS

Manuscript under review by AISTATS 2016

100 101 102
0

2

4

6

8

10

12

14

16

Number of nodes

in
f (
α

(ε
)/ε

2)

(a) U(0, 1) weights

100 101 102
1

1.5

2

2.5

3

3.5

4

Number of nodes

in
f (
α

(ε
)/ε

2)

(b) U(

1
2 , 1) weights

100 101 102
0

10

20

30

40

50

60

70

Number of nodes
in

f (
α

(ε
)/ε

2)
(c) U(0, 1

2) weights

Figure 2: Dependence of ↵⇤ on the size of the graph with random weights, 100 graphs for each size.

the regret of Exp3-WIX is always within logarithmic
factors of the minimax regret of order

p
NT for the

standard multi-armed bandit problem without side ob-
servations.

It is also easy to see that the e↵ective independence
number exactly matches the independence number if
all edge weights are binary. This in particular implies
that for such graphs, the regret of Exp3-WIX grows
at the minimax rate established by Alon et al. (2013)
up to logarithmic factors, matching the performance
guarantees of the algorithms of Alon et al. (2013) and
Kocák et al. (2014). Another interesting case is when
all weights are either zero or equal to a fixed constant
", also assuming si,i = ". In this case, the e↵ective in-
dependence number becomes ↵

"2 , where ↵ is the inde-
pendence number of the underlying unweighted graph.
This case was studied in the recent paper of Wu et al.
(2015), who show (in their Corollary 4) that the mini-
max regret in this case is of ⇥(

p
↵T/")—implying that

our performance bounds for this case are again near-
optimal4. Also observe that whenever all weights are
bounded by some constant c > 0 from below, the ef-
fective independence number becomes upper-bounded
by 1/c2, irrespective of the number of actions. That
is, our algorithm can achieve an exponential perfor-
mance gain over bandit algorithms in terms of N by
leveraging such feedback structures.

Let us now describe a class of weighted graphs with
bounded e↵ective independence numbers. Consider
a geometric graph whose nodes represent vertices of
a uniform k ⇥ k grid on [0, 1]2. The weight of edge
(i, j) is given as 1/(1 + d

2
i,j), where di,j is the Eu-

clidean distance of the respective vertices represented
by i and j. This graph can be used to model a sen-
sor network where the measurement accuracy of mea-
surements degrades with the distance. Thus, reading

4
While we prove our bounds for the case where si,i = 1

for all i, it is easy to extend our results to the case where

all such weights equal a constant in [0, 1].

the measurements from one sensor will give informa-
tion about the measurements of nearby sensors as well.
Intuitively, increasing the number of sensors (i.e., re-
fining the grid) should only improve the information-
sharing between sensors up to a certain level. It is
natural to expect a reasonable graph property quanti-
fying the information-sharing e�ciency to capture this
intuition. We have numerically evaluated the e↵ec-
tive independence number of a number of graphs from
the above family to test if it satisfies the above crite-
rion. We have found that the e↵ective independence
numbers remain bounded by a constant (roughly 30)
even when refining the grid infinitely, confirming that
the e↵ective independence number captures the above
phenomenon.

Finally, we conducted some numerical simulations to
evaluate the average e↵ective independence numbers
of certain types of weighted random graphs. In partic-
ular, we considered random graphs with i.i.d. weights
distributed uniformly on [0, 1], [12 , 1] and [0, 1

2]. The
distributions of the e↵ective independence numbers are
illustrated as scatter plots for di↵erent graph sizes on
Figure 2. First, observe that the average ↵⇤ of U(0, 1)-
weighted graphs shows a logarithmic trend in terms of
N . The results concerning U(12 , 1)-weighted graphs
are not surprising given that we have already estab-
lished that graphs with bounded weights have finite
e↵ective independence numbers. For U(0, 1

2)-weighted
graphs, we see that ↵

⇤ grows linearly up until a cer-
tain threshold, when it starts to follow a logarithmic
trend. The intuition behind this linear behavior for
small graphs is the following. First, observe that the
optimal value of " is greater than 1/

p
N . That is, un-

til N is large enough so that a critical mass of edges
are above this quantity, the optimal value of ↵(")/"2

remains N . Once N is beyond this critical value, ↵⇤

starts following a logarithmic trend.

k x k grid graphs with weights 1/(1+dij2) have α* empirically bounded by a constant

special case: if sij is either 0 or ε than α*= α/ε2

For this special case, there is a minimax regret Θ(√(αT)/ε) by Wu, György, Szepesvári:
Online Learning with Gaussian Payoffs and Side Observations, NIPS 2015.

𝛂* FOR RANDOM GRAPHS WITH IID WEIGHTS

37

ALGORITHM
Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

Manuscript under review by AISTATS 2016

Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

WIX estimate

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

Naïve estimate

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘

RT = ?

Michal Valko – Graphs in Machine Learning SequeL - 34/67

38

Threshold estimate

Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

EMPIRICAL RESULTS FOR 5X5 GRID

Manuscript under review by AISTATS 2016

Value of ε

C
um

ul
at

iv
e

re
gr

et

eta = 0.010000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Value of ε

Cu
m

ul
at

iv
e

re
gr

et

eta = 0.100000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Value of ε

C
um

ul
at

iv
e

re
gr

et

Adaptive learning rate

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Figure 3: Comparison of total regrets of the algorithms at time T for static and adaptive learning rates.

6 Experiments

In this section, we empirically compare Exp3-WIX

to some of its natural competitors: Exp3-IXt, vanilla
Exp3 that ignores all side observations and a straight-
forward variation of the Exp3-IX algorithm of Kocák
et al. (2014). This latter algorithm, referred to as
Exp3-IXb (with “b” standing for “basic”), uses a
threshold " to decide which observations are too noisy
to use and which are the ones to be retained: All
the edges with weights smaller than a parameter " are
deleted and the rest of the weights are set to 1. The
algorithm then plays basic Exp3-IX for the resulting
binary graph. That is, the di↵erence between Exp3-

IXt and Exp3-IXb is that the latter does not adjust
for the bias arising from using unreliable side observa-
tions. Note that Exp3-IXb comes without any formal
performance guarantee.

For the purpose of the experiments, we assumed to
have 25 actions forming 5⇥5 grid embedded in a plane.
The distance of neighbors in the grid was set to be 1.
Using this structure, we defined the weight connect-
ing two nodes as min

�
3/d2, 1

, and d is the Euclidean

distance between actions in the grid. This choice is
motivated by the fact that the intensity of many phys-
ical phenomena decays proportionally to the inverse
square of the distance (e.g., gravitational force, elec-
tromagnetic phenomena).

A simple idea for constructing synthetic loss sequences
is letting the instantaneous loss of each action evolve as
a random walk with small Gaussian increments (with
appropriate truncations when the loss goes beyond the
[0, 1] interval). In our experiments, we took this idea
one step further: We constructed 20 independent ran-
dom walks for each action and alternated them, that
is, we used one random walk each to define every twen-
tieth loss. Using this procedure, we generated a sin-
gle loss sequence of T = 5, 000 steps to test the algo-
rithms. For a fair comparison, we ran each algorithm
for their respective theoretically motivated adaptive
learning rates, and also for a number of static learning
rates between 0.001 and 1. For static learning rates,

we observed the best performance of Exp3 for learn-
ing rates around 0.01, all the other algorithms did well
for learning rates around 0.1. Due to the lack of space,
we included plots only for these two learning rates.

We ran Exp3-IXb and Exp3-IXt for several values of
" from 0 to 1. In all experiments, we set the implicit
exploration parameters to zero. This is well-justified
in the case of undirected graphs, as shown by the anal-
ysis of Alon et al. (2013). Figure 3 shows the perfor-
mance of the algorithms for ⌘ = 0.01, ⌘ = 0.1 and the
adaptive learning rates for each algorithm as a func-
tion of the threshold parameter ". Each curve on this
graph is the average of the total regrets measured in
10 independent runs with error bars proportional to
the empirical standard deviation.

Our experiments confirm that guessing the right value
for the threshold parameter is indeed a very di�cult
problem: while Exp3-WIX performs consistently well
for all parameter settings, Exp3-IXt and Exp3-IXb

only perform reasonably well for moderate values of "
that are not supported by theory. In fact, the value
of " optimizing ↵(")/"2 is 1, which is shown to per-
form poorly in the experiments. Perhaps surprisingly,
Exp3-IXb performs well despite the obvious bias in
its loss estimates. The performance of Exp3 is signifi-
cantly worse than Exp3-WIX, confirming the benefit
of side-observations, however noisy they are.

7 Conclusions and open problems

The main contribution of our work is introducing a
new partial-observability model for adversarial online
learning and proposing an e�cient learning algorithm
with rigorous performance guarantees for this setting.
Our regret bounds depend on a newly introduced
graph property that we call the e↵ective independence
number. While the recent results of Wu et al. (2015)
suggest that our bounds are minimax optimal in some
special cases of our framework, it is not yet known
whether the e↵ective independence number is the ex-
act quantity that characterizes the minimax regret in
general—we leave this exciting question open for fu-
ture investigation.

nodes: 25 actions on a 5x5 grid

weight: min{3/d2,1}

d is the euclidean distance

loss: alternating random walks

39

INFLUENCE
MAXIMISATION

looking for the influential nodes
while exploring the graph

Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016 (to appear)

REVEALING BANDITS FOR LOCAL INFLUENCE
Revealing Graph bandits: Influence Maximization

Model: Unknown M = (pi ,j)i ,j symmetric matrix of influences

In each time step t = 1, . . . ,T
I learners picks a node kt
I set Skt ,t of influenced nodes is revealed

Select influential people = Find the strategy maximizing

LT =
TX

t=1

|Skt ,t | .

The number of expected influences of node k is by definition

rk = E [|Sk,t |] =
X

jN
pk,j .

Michal Valko – Graphs in Machine Learning SequeL - 36/66

Revealing Graph bandits: Influence Maximization
Model: Unknown M = (pi ,j)i ,j symmetric matrix of influences

In each time step t = 1, . . . ,T
I learners picks a node kt
I set Skt ,t of influenced nodes is revealed

Select influential people = Find the strategy maximizing

LT =
TX

t=1

|Skt ,t | .

The number of expected influences of node k is by definition

rk = E [|Sk,t |] =
X

jN
pk,j .

Michal Valko – Graphs in Machine Learning SequeL - 36/66

Select influential people = Find the strategy maximising

The number of expected influences of node k is
by definition

Revealing Graph bandits: Influence Maximization
Model: Unknown M = (pi ,j)i ,j symmetric matrix of influences

In each time step t = 1, . . . ,T
I learners picks a node kt
I set Skt ,t of influenced nodes is revealed

Select influential people = Find the strategy maximizing

LT =
TX

t=1

|Skt ,t | .

The number of expected influences of node k is by definition

rk = E [|Sk,t |] =
X

jN
pk,j .

Michal Valko – Graphs in Machine Learning SequeL - 36/66

Oracle strategy always selects the best

Revealing Graph bandits: Influence Maximization

Oracle strategy always selects the best:

k⇤ = arg max
k

E
" TX

t=1

|Sk,t |
#
= arg max

k
Trk .

Let the reward of this node be r⇤ = rk⇤ . Its expected performance
if it consistently sampled k⇤ over n rounds is equal to

E [L⇤
T] = Tr⇤.

Expected regret of any adaptive, non-oracle strategy unaware of M:

E [RT] = E [L⇤
T]� E [LT] .

Michal Valko – Graphs in Machine Learning SequeL - 37/66

Revealing Graph bandits: Influence Maximization

Oracle strategy always selects the best:

k⇤ = arg max
k

E
" TX

t=1

|Sk,t |
#
= arg max

k
Trk .

Let the reward of this node be r⇤ = rk⇤ . Its expected performance
if it consistently sampled k⇤ over n rounds is equal to

E [L⇤
T] = Tr⇤.

Expected regret of any adaptive, non-oracle strategy unaware of M:

E [RT] = E [L⇤
T]� E [LT] .

Michal Valko – Graphs in Machine Learning SequeL - 37/66

Expected regret of any adaptive, non-oracle
strategy unaware of M

Revealing Graph bandits: Influence Maximization
Model: Unknown M = (pi ,j)i ,j symmetric matrix of influences

In each time step t = 1, . . . ,T
I learners picks a node kt
I set Skt ,t of influenced nodes is revealed

Select influential people = Find the strategy maximizing

LT =
TX

t=1

|Skt ,t | .

The number of expected influences of node k is by definition

rk = E [|Sk,t |] =
X

jN
pk,j .

Michal Valko – Graphs in Machine Learning SequeL - 36/66

41

REVEALING BANDITSRevealing Graph bandits: Influence Maximization

Ignoring the structure again? The best we can do is eO �p
r⇤TN

�

We aim to do better: RT = eO �p
r⇤TD⇤

�

D⇤ - detectable dimension dependent on T and the structure
I good case: star-shaped graph can have D⇤ = 1
I bad case: a graph with many small cliques.
I the worst case: all nodes are disconnected except 2

Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

More information: Revealing Graph Bandits for Maximizing Local Influence, Carpentier and Valko, AISTATS 2016

Michal Valko – Graphs in Machine Learning SequeL - 38/6642

reward of the
best node

EMPIRICAL RESULTS
Manuscript under review by AISTATS 2016

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD⇤ = 134, bT⇤ = 36

round t

re
gr

et

Graph: Facebook - Number of runs: 100 - revelation p = 0.80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5
× 106

BARE
GraphMOSS

bD⇤ = 125, bT⇤ = 28

round t

re
gr

et

Graph: Enron - Number of runs: 100 - revelation p = 0.80

1 5000 10000 15000 20000 25000 30000 35000
0

1

2

3

4

5

6

7

8

9
× 107

BARE
GraphMOSS

bD⇤ = 564, bT⇤ = 107

round t

re
gr

et

Graph: Gnutella - Number of runs: 100 - revelation p = 0.80

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9
× 105

BARE
GraphMOSS

bD⇤ = 3916, bT⇤ = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.20

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

BARE
GraphMOSS

bD⇤ = 529, bT⇤ = 147

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.40

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
× 104

BARE
GraphMOSS

bD⇤ = 230, bT⇤ = 64

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.60

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
× 104

BARE
GraphMOSS

bD⇤ = 161, bT⇤ = 50

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD⇤ = 134, bT⇤ = 36

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 1.00

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14
× 104

BARE
GraphMOSS

bD⇤ = 133, bT⇤ = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)

43

CONCLUSION AND NEW DIRECTIONS

Graph Bandits

specific way of exploiting the problem structure to learn faster

different settings

smooth rewards - spectral bandits, cheap bandits

(noisy) side observations - informed bandits

influence maximisation - revealing bandits

New directions

graph generators (BA, ER, …)

learning (with) communities - SBM

crawling strategies

reducing assumption on graph knowledge

44

Multi-armed Bandit Workshop 2016 at STOR-i, Lancaster University, UK

Graph Bandits: Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@inria.fr

http://researchers.lille.inria.fr/~valko/hp/

mailto:michal.valko@inria.fr
http://researchers.lille.inria.fr/~valko/hp/

