

informatics mathematics GRAPH BANDITS

Michal Valko, SequeL, Inria Lille - Nord Europe

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps
 - $T \ll N$
- extra information
 - ratings are smooth on a graph
- main question: can we learn faster?

GETTING REAL

Let's be lazy and ignore the structure

Worst case regret (to the best fixed strategy)

How big is N? Number of movies on <u>http://www.imdb.com/stats</u>: 3,589,057

Problem: Too many actions!

Multi-armed bandit problem!

Arm independence is too strong and unnecessary

Replace N with something much smaller

 $R_T = \mathcal{O}\left(\sqrt{NT}\right)$

- problem/instance/data dependent
- example: linear bandits N to D
- In this talk: Graph Bandits!

- sequential problems where actions are nodes on a graph
- ▶ find strategies that replace **N** with a **smaller graph-dependent** quantity

#actions

#rounds

#dimensions

JOINT WORK WITH...

Alexandra Carpentier Universität Potsdam

Branislav Kveton Adobe Research

Gergely Neu Universitat Pompeu Fabra

Manjesh Hanawal Boston University

Rémi Munos Google DeepMind

Shipra Agrawal Columbia University

Tomáš Kocák SequeL, Inria Lille graduating in 2016

Venkatesh Saligrama Boston University

GRAPH BANDITS: GENERAL SETUP

Every round **t** the learner

- ▶ picks a node $I_t \in [N]$
- ▶ incurs a loss ℓ_{t,I_t}
- optional feedback

The performance is total expected regret

$$R_{T} = \max_{i \in [N]} \mathbb{E} \left[\sum_{t=1}^{T} (\ell_{t,I_{t}} - \ell_{t,i}) \right]$$

1. loss

Specific setups differ in 2. feedback

3. guarantees

Sequel

SPECIFIC GRAPH BANDIT SETTINGS

MV, Munos, Kveton, Kocák: **Spectral Bandits for Smooth Graph Functions**, ICML 2014 Kocák, MV, Munos, Agrawal: **Spectral Thompson Sampling**, AAAI 2014 Hanawal, Saligrama, MV, Munos: **Cheap Bandits**, ICML 2015

SPECTRAL BANDITS

exploiting smoothness of rewards on graphs

SPECTRAL BANDITS

Assumptions

- Unknown reward function $f : V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \neq neighboring movies.

*C***Déside**rata

An algorithm useful in the case $T \ll N!$

FLIXSTER DATA

Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

SMOOTH GRAPH FUNCTIONS

 $\frac{1}{2} \sum_{i,j \leq n} w_{i,j} (f_i - f_j)^2$

- $\mathbf{f} = (f_1, \ldots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
 - Columns of Q are eigenvectors of L.
 - Columns of **Q** form a basis.

•
$$\alpha^*$$
: Unique vector such that $\mathbf{Q}\alpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha^*$

$$S_G(\mathbf{f}) = \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha}^* = \| \boldsymbol{\alpha}^* \|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\alpha_i^*)^2$$

Smoothness and regularization: Small value of

(a)
$$S_G(\mathbf{f})$$
 (b) Λ norm of α^* (c) α_i^* for large λ_i

SPECTRAL BANDIT: LEARNING SETTING

Learning setting for a bandit algorithm π

- ln each time t step choose a node $\pi(t)$.
- the $\pi(t)$ -th row $\mathbf{x}_{\pi(t)}$ of the matrix **Q** corresponds to the arm $\pi(t)$.
- Obtain noisy reward $r_t = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$. Note: $\mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* = f_{\pi(t)}$
 - ► ε_t is *R*-sub-Gaussian noise. $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \leq \exp(\xi^2 R^2/2)$

Minimize cumulative regret

$$R_T = T \max_a (\mathbf{x}_a^{\mathsf{T}} \boldsymbol{\alpha}^*) - \sum_{t=1}^T \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^*.$$

Can we just use linear bandits?

16 Sequel

LINEAR VS. SPECTRAL BANDITS

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

(Agrawal and Goyal, 2013)

(Li et al., 2010)

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE!**

Spectral bandit algorithms

- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
 - Operations per step: D^2N
- SpectralTS

(Kocák et al., AAAI 2014)

(Valko et al., ICML 2014)

- Regret bound $\approx d\sqrt{T \ln N}$
- Operations per step: $D^2 + DN$

Note: *d* is effective dimension, usually much smaller than *D*.

SPECTRAL BANDITS – EFFECTIVE DIMENSION

Effective dimension: Largest *d* such that

$$(d-1)\lambda_d \leq rac{T}{\log(1+T/\lambda)}.$$

- Function of time horizon and graph properties
- \triangleright λ_i : *i*-th smallest eigenvalue of **A**.
- > λ : Regularization parameter of the algorithm.

Properties:

- *d* is small when the coefficients λ_i grow rapidly above time.
- d is related to the number of "non-negligible" dimensions.
- ► Usually *d* is much smaller than *D* in real world graphs.
- Can be computed beforehand.

SPECTRAL BANDITS – EFFECTIVE DIMENSION

Note: In our setting T < N = D.

SPECTRALUCB

Given a vector of weights $\boldsymbol{\alpha}$, we define its $\boldsymbol{\Lambda}$ norm as

$$\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}} = \sqrt{\sum_{k=1}^{N} \lambda_k \alpha_k^2} = \sqrt{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}},$$

and fit the ratings r_v with a (regularized) least-squares estimate

$$\widehat{\alpha}_t = \operatorname*{arg\,min}_{\alpha} \left(\sum_{v=1}^t \left[\langle \mathbf{x}_v, \alpha \rangle - r_v \right]^2 + \| \alpha \|_{\mathbf{\Lambda}}^2 \right).$$

 $\|lpha\|_{\Lambda}$ is a penalty for non-smooth combinations of eigenvectors.

SPECTRALUCB PSEUDOCODE

.

1: **Input:**

2:
$$N, T, \{\Lambda_L, \mathbf{Q}\}, \lambda, \delta, R, C$$

3: **Run:**

4:
$$\Lambda \leftarrow \Lambda_{L} + \lambda I$$

5:
$$d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$$

6: for
$$t = 1$$
 to T do

7: Update the basis coefficients
$$\widehat{\alpha}$$
:

8:
$$\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$$

9:
$$\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]'$$

10:
$$\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^+ + \mathbf{\Lambda}$$

11: $\widehat{\mathbf{v}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{V}_t^{\top}$

11:
$$\alpha_t \leftarrow \mathbf{V}_t \ \mathbf{X}_t \mathbf{r}$$

12:
$$c_t \leftarrow 2R\sqrt{d}\ln(1+t/\lambda) + 2\ln(1/\delta) + C$$

13:
$$\pi(t) \leftarrow \arg \max_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \widehat{\boldsymbol{\alpha}} + \boldsymbol{c}_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}_{t}^{-1}} \right)$$

14: Observe the reward r_t

15: end for

- ► *d*: Effective dimension.
- > λ : Minimal eigenvalue of $\Lambda = \Lambda_L + \lambda I$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\Lambda} \leq C$.
- ► $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$ for all *i*.

The **cumulative regret** R_T of **SpectralUCB** is with probability $1 - \delta$ bounded as

$$R_{T} \leq \left(8R\sqrt{d\ln\frac{\lambda+T}{\lambda}+2\ln\frac{1}{\delta}}+4C+4\right)\sqrt{dT\ln\frac{\lambda+T}{\lambda}}.$$

 $R_T \approx d\sqrt{T \ln T}$

maia

EVALUATION

22 Sequel

Kocák, Neu, MV, Munos: **Efficient learning by implicit exploration in bandit problems with side observations**, NIPS 2014

GRAPH BANDITS WITH SIDE **OBSERVATIONS** exploiting free observations from neighbouring nodes

SIDE OBSERVATIONS: UNDIRECTED

Example 1: undirected observations

SIDE OBSERVATIONS: DIRECTED

Example 2: Directed observation

SIDE OBSERVATION: ADVERSARIAL SETTING

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed
 - Disclosed / Not disclosed

Learner:

- ▶ Plays action $I_t \in [N]$
- Obtain loss ℓ_{t,I_t} of action played
- Observe losses of neighbors of I_t
 - Graph: disclosed

SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full Information setting

- Pick an action (e.g. action A)
- Observe losses of all actions

• $R_T = \widetilde{\mathcal{O}}(\sqrt{T})$

E C A B F

Bandit setting

- Pick an action (e.g. action A)
- Observe loss of a chosen action
- $R_T = \widetilde{\mathcal{O}}(\sqrt{NT})$

UNDIRECTED GRAPHS

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know the graph
- Clique decomposition (c cliques)
- $R_T = \widetilde{\mathcal{O}}(\sqrt{cT})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know the graph
- Independence set of α actions

 $\blacktriangleright R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $\blacktriangleright R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$
- Exp3-IX Kocák et. al
 - No need to know graph
 - $\blacktriangleright R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$

EXP3-IX: IMPLICIT EXPLORATION

informatics mathematics

Algorithm 1 EXP3-IX Benefits of the **implicit exploration** 1: Input: Set of actions S = [d], parameters $\gamma_t \in (0, 1), \eta_t > 0$ for $t \in [T]$. no need to know the graph before 3: for t = 1 to T do $w_{t,i} \leftarrow (1/d) \exp\left(-\eta_t \widehat{L}_{t-1,i}\right)$ for $i \in [d]$ 4: An adversary privately chooses losses $\ell_{t,i}$ 5: no need to estimate dominating set for $i \in [d]$ and generates a graph G_t $W_t \leftarrow \sum_{i=1}^d w_{t,i}$ 6: no need for doubling trick $p_{t,i} \leftarrow w_{t,i}/W_t$ 7: Choose $I_t \sim p_t = (p_{t,1}, ..., p_{t,d})$ 8: Observe graph G_t 9: no need for aggregation Observe pairs $\{i, \ell_{t,i}\}$ for $(I_t \to i) \in G_t$ 10: $o_{t,i} \leftarrow \sum_{(i \to i) \in G_t} p_{t,j}$ for $i \in [d]$ 11: $\hat{\ell}_{t,i} \leftarrow \frac{\ell_{t,i}}{o_{t,i} + \gamma_t} \mathbb{1}_{\{(I_t \to i) \in G_t\}} \text{ for } i \in [d]$ 12: $R_T = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}\,T\,\ln\,N}\right)$ 13: **end for** ••••••• Optimistic bias for the loss estimates

 $\mathbb{E}[\hat{\ell}_{t,i}] = \frac{\ell_{t,i}}{o_{t,i} + \gamma} o_{t,i} + 0(1 - o_{t,i}) = \ell_{t,i} - \ell_{t,i} \frac{\gamma}{o_{t,i} + \gamma} \leq \ell_{t,i}$

COMPLEX ACTIONS: NEWS FEEDS

- Play *m* out of *N* nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

COMPLEX GRAPH ACTIONS

- ▶ Play action $\mathbf{V}_t \in S \subset \{0,1\}^N$, $\|\mathbf{v}\|_1 \leq m$ from all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_t^{\mathsf{T}} \boldsymbol{\ell}_t$
- Observe additional losses according to the graph

$$R_{T} = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\sum_{t=1}^{T}\alpha_{t}}\right) = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\overline{\alpha}T}\right)$$

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016 (to appear)

GRAPH **BANDITS WITH NOISY SIDE OBSERVATIONS**

exploiting side observations that can be perturbed by certain level of noise

NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

- reliable: use as exact
- unreliable: rubbish

then we can improve over pure bandit setting!2) Treating noisy observation induces bias

What can we hope for?

$$\widetilde{\mathcal{O}}\left(\sqrt{\mathbf{1}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\mathbf{N}T}\right)$$

effective independence number

Can we learn without knowing either ϵ or α^* ?

PROTOCOL FOR NOISY OBSERVATIONS

Parameters:

set of arms [N], number of rounds T. For all t = 1, 2, ..., T repeat

- 1. The environment picks a loss function ℓ_t : $[N] \rightarrow [0,1]$ and a directed weighted graph G_t with edge weights in [0,1].
- 2. Based on its previous observations (and possibly some source of randomness), the learner picks an action $I_t \in [N]$.
- 3. The learner suffers loss ℓ_{t,I_t} .
- 4. The learner observes G_t and the feedback

$$c_{t,i} = s_{t,(I_t,i)} \cdot \ell_{t,i} + (1 - s_{t,(I_t,i)}) \cdot \xi_{t,i}$$

for every arm $i \in [N]$.

Nothing is revealed to the learner

The weights **s** are revealed

The noise is bounded ξ≤R

NOISY SIDE OBSERVATIONS

- ► **G**: weighted graph
- ► $G(\varepsilon)$: graph with only $\geq \varepsilon$ edges
- $\alpha(ε)$: independence number of G(ε)
- effective independence number of G: $\alpha^* = \min_{\varepsilon \in [0,1]} \frac{\alpha(\varepsilon)}{\varepsilon^2}$

Since $\alpha^* \leq \alpha(1)/1 \leq N$

incorporating noisy observations does not hurt

 $\widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}^{\star}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{NT}\right)$

But how much does it help?

- ▶ k x k grid graphs with weights $1/(1+d_{ij}^2)$ have α * empirically bounded by a constant
- **special case:** if s_{ij} is either 0 or ε than $\alpha *= \alpha/\varepsilon^2$
 - For this special case, there is a minimax regret Θ(√(αT)/ε) by Wu, György, Szepesvári: Online Learning with Gaussian Payoffs and Side Observations, NIPS 2015.

α^* For random graphs with IID weights

ALGORITHM

Algorithm 1 Algorithm template: EXP3 (Auer et al., 2002a)

- 1: Initialization: $\widehat{L}_{0,i} = 0$ for all $i \in [N]$.
- 2: for t = 1 to T do
- 3: Set η_t and γ_t .
- 4: Construct the probability distribution p_t with.

$$p_{t,i} = \frac{\exp(-\eta_t \widehat{L}_{t-1,i})}{\sum_{j=1}^N \exp(-\eta_t \widehat{L}_{t-1,i})}$$

- 5: Play random arm I_t according to I_t
- 6: Incur loss ℓ_{t,I_t} .
- 7: Observe $c_{t,i} = s_{t,(I_t,i)}\ell_{t,i} + (1 s_{t,(I_t,i)})\xi_{t,i}$ for all $i \in [N]$.
- 8: Observe graph G_t .
- 9: Construct loss estimates $\hat{\ell}_{t,i}$.

10: Set
$$\widehat{L}_{t,i} = \widehat{L}_{t-1,i} + \widehat{\ell}_{t,i}$$
.

11: **end for**

Naïve estimate $R_T = ?$ $\hat{\ell}_{t,i}^{(B)} = \frac{c_{t,i}}{\sum_{j=1}^{N} p_{t,j} s_{t,(j,i)} + \gamma_t}$

Threshold estimate
$$R_T = \widetilde{\mathcal{O}}\left(\sqrt{\alpha^{\star}T}\right)$$

 $\widehat{\ell}_{t,i}^{(\mathrm{T})} = \frac{c_{t,i}\mathbb{I}_{\{s_{t,(I_t,i)} \ge \varepsilon_t\}}}{\sum_{j=1}^{N} p_{t,j}s_{t,(j,i)}\mathbb{I}_{\{s_{t,(j,i)} \ge \varepsilon_t\}} + \gamma_t}$

WIX estimate

$$R_T = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}^{\star} T}\right)$$

$$\widehat{\ell}_{t,i} = \frac{s_{t,(I_t,i)} \cdot c_{t,i}}{\sum_{j=1}^{N} p_{t,j} s_{t,(j,i)}^2 + \gamma_t}$$

38 Sequel

EMPIRICAL RESULTS FOR 5X5 GRID

- nodes: 25 actions on a 5x5 grid
- weight: min{3/d²,1}
 - d is the euclidean distance
- loss: alternating random walks

Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016 (to appear)

INFLUENCE MAXIMISATION looking for the influential nodes while exploring the graph

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown $\mathbf{M} = (p_{i,j})_{i,j}$ symmetric matrix of influences

In each time step $t = 1, \ldots, T$

- \blacktriangleright learners picks a node k_t
- ▶ set $S_{k_t,t}$ of influenced nodes is *revealed*

Ínría Select influential people = Find the strategy maximising $L_T = \sum |S_{k_t,t}|$

The number of expected influences of node **k** is by definition

$$r_k = \mathbb{E}\left[|S_{k,t}|\right] = \sum_{j \le N} p_{k,j}$$

Oracle strategy always selects the best

$$k^* = \arg\max_k \mathbb{E}\left[\sum_{t=1}^T |S_{k,t}|\right] = \arg\max_k Tr_k$$

Expected regret of any adaptive, non-oracle strategy unaware of M

 $\mathbb{E}[R_T] = \mathbb{E}[L_T^*] - \mathbb{E}[L_T]$

► expl ► ban

REVEALING BANDITS

Ignoring the structure again? The best we can do is $\widetilde{\mathcal{O}}\left(\sqrt{r_*TN}\right)$

We aim to do better: $R_T = \widetilde{\mathcal{O}} \left(\sqrt{r_* T D_*} \right)$

 D_* - detectable dimension dependent on T and the structure

- ▶ good case: star-shaped graph can have $D_* = 1$
- bad case: a graph with many small cliques.
- the worst case: all nodes are disconnected except 2

Idea of the algorithm:

- exploration phase: sample randomly to find out $\approx D_*$ nodes
- bandit case: use any bandit algorithm on these nodes

reward of the best node

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Albert. Middle left: Facebook. Middle right: Enron. Right: Gnutella.

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

Enron and Facebook vs. Gnutella (decentralised)

CONCLUSION AND NEW DIRECTIONS

Graph Bandits

- specific way of exploiting the problem structure to learn faster
- different settings
 - smooth rewards spectral bandits, cheap bandits
 - (noisy) side observations informed bandits
 - influence maximisation revealing bandits

New directions

- ▶ graph generators (BA, ER, ...)
- learning (with) communities SBM
- crawling strategies
- reducing assumption on graph knowledge

Multi-armed Bandit Workshop 2016 at STOR-i, Lancaster University, UK Graph Bandits: Michal Valko, SequeL, Inria Lille - Nord Europe, <u>michal.valko@inria.fr</u> <u>http://researchers.lille.inria.fr/~valko/hp/</u>