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Example of a graph bandit problem

o movie recommendation
. > recommend movies to a single user

£ S BEC > goal: maximise the sum of the ratings
g est " .
Forest G Cuckoo' (minimise regret)
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. The Motrix > good prediction after just a few steps
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s o > extra information
5, Ligon > ratings are smooth on a graph

i > main question: can we learn faster?
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GETTING REAL V2

Multi-armed bandit problem!
Worst case regret (to the best fixed strategy) Rr =0 (\/_ N T)
How big is N? Number of movies on http://www.imdb.com/stats: 3,589,057

Problem: Too many actions!

s BTl


http://www.imdb.com/stats

LEARNING FASTER V% 77
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> Armindependence is too strong and unnecessary

> Replace N with something much smaller
> problem/instance/data depend
> example: linear bandits NtoD

> In this talk: Graph Bandits!

> sequential problems where actions are nodes on a graph

> find strategies that replace N with a smaller graph-dependent quantity
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GRAPH BANDITS: GENERAL SETUP

Every round t the learner

> picksanode It € [N]
> incursaloss £,

> optional feedback

The performance is total expected regret

- i
R+ = K Or ) — ¥y ;
T fg[a/\ﬁ ;( t,l; t, )_

1. loss
Specific setups differin 2. feedback

3. guarantees
9 BZeinl



SPECIFIC GRAPH BANDIT SETTINGS (2570

Independence

number

Smoothness
Spectral bandits

Rr = 6(0’%)

side observations
On graphs

#relevant
eigenvectors

noisy Side
observationg

ONn graphs
Rr =0 (Va"Tnn)

Influence Maximisation
revealing bandits

"1 =0 (VrTD;)

detectable affective

Independence number

dimension




MV, Munos, Kveton, Kocak: Spectral Bandits for Smooth Graph Functions, ICML 2014
Kocak, MV, Munos, Agrawal: Spectral Thompson Sampling, AAAI 2014
Hanawal, Saligrama, MV, Munos: Cheap Bandits, ICML 2015

SPECTRAL
BANDITS

exploiting smoothness of
rewards on graphs




SPECTRAL BANDITS brsia

Assumptions

» Unknown reward function f : V(G) — R.

. . gt 0
» Function f is smooth on a graph. F ord o

» Similar preferences #% neighboring movies. )

The Matrix
Seven Samurai
City of God
SeT7en

The Usual Suspects

Tﬁe S[i}ence of the Lambg
. .
e ae Wgon a Time iy the Wegt
Légy, . nderfy] Life

Casab]an ZP T Ofessiona]

Desiderata

An algorithm useful in the case T < N!
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FLIXSTER DATA
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informatics g#”mathematics
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Eigenvectors from the Flixster data corresponding to the smallest
few eigenvalues of the graph Laplacian projected onto the first

principal component of data. Colors indicate the values.
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SMOOTH GRAPH FUNCTIONS -y 7

» f=(f,...,fy)": Vector of function values.

» Let L= QAQ" be the eigendecomposition of the Laplacian.

» Diagonal matrix A whose diagonal entries are eigenvalues of L.
» Columns of Q are eigenvectors of L.

- LY n wialF — )
» Columns of Q form a basis. 2 £ainj<n TIAT Y
ote: Q'f =

*

» o™: Unique vector such that Q

N
Se(f) = fFILF=fQAQ'f = o A" = [[a*[[3 = > Ai(a])?
i=1

Smoothness and regularization: Small value of

(@) Sg(f) (b) A norm of a*  (c) af for large \;




SPECTRAL BANDIT: LEARNING SETTING lrrsia

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Learning setting for a bandit algorithm 7
> In each time t step choose a node 7(t).
> the m(t)-th row x.(; of the matrix Q corresponds to the arm 7(t).
» Obtain noisy reward r; = x;(t)a* + €¢. Note: x; ™ = fr)

> &; is R-sub-Gaussian noise. VE € R, E[e*f] < exp (£?R?/2)

» Minimize cumulative regret

-
Rr = T max (x;a*) = » xpe”,

t=1

(an we just use linear bandits?

15 .. "‘/‘IJ)‘\“ :



LINEAR VS. SPECTRAL BANDITS V10X 77
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» Linear bandit algorithms

» LinUCB (Li et al., 2010)
» Regret bound =~ DV TInT
» LinearTS (Agrawal and Goyal, 2013)

» Regret bound =~ DV T InN

Note: D is ambient dimension, in our case N, length of x;.
Number of actions, e.g., all possible movies — HUGE!

» Spectral bandit algorithms

» SpectralUCB (Valko et al., ICML 2014)

» Regret bound =~ dv TInT
» Operations per step: D*N
» SpectralTS (Kocék et al., AAAI 2014)

» Regret bound =~ dv T InN
» Operations per step: D? + DN

Note: d is effective dimension, usually much smaller than D.

I ,'
16 =g aaus
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SPECTRAL BANDITS - EFFECTIVE DIMENSION 2LaA—
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» Effective dimension: Largest d such that

Ay < I
= log(l+ T/A)

(d—1)

» Function of time horizon and graph properties
» )\;: i-th smallest eigenvalue of A.

> \: Regularization parameter of the algorithm.

Properties:
» d is small when the coefficients \; grow rapidly above time.
» d is related to the number of “non-negligible” dimensions.
» Usually d is much smaller than D in real world graphs.

» Can be computed beforehand.



SPECTRAL BANDITS - EFFECTIVE DIMENSION

informatics , mathematics
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effective dimenstion
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Barabasi—Albert graph N=500
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Flixster graph: N=4546
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effective dimenstion
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SPECTRALUCB enc e

and fit the ratings r, with a (regularized) least-squares estimate

t
& = arg min (Z [(xy, ) — r]* + a|,2\) .
(81
v=1

|x||a is a penalty for non-smooth combinations of eigenvectors.

19 B =% {44552



SPECTRALUCB PSEUDOCODE (2570

1: Input:
2 N, T, {AN.,Q}, \, 6, R, C
3: Run:
4: N <+ AL+ )
5: d<<max{d:(d—D)Aad < T/In(1+T/N)}
6: fort=1to T do
7 Update the basis coefficients a:
8: X: [X7r(1)7 ce ,Xw(t_l)]T
9 r<+[rn,...,r-1]"
10:  V: <+ X X{ +A
11: & < V' X]r
12: ¢+ 2R+/dIn(1+t/\)+2In(1/6) + C
13:  w(t) « arg max, (x;a + ctuxau\,t_l)

14: Observe the reward r;
15: end for

= £
20 2NN



SPECTRALUCB REGRET BOUND -y
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» d: Effective dimension.
» A: Minimal eigenvalue of A = A + Al
» C: Smoothness upper bound, ||a*||an < C.

> xja* € [—1,1] for all /.

The cumulative regret Rt of SpectralUCB is with probability 1 — ¢
bounded as

Rt < <8R\/dln)\+T+2ln1—l—4C+4> \/dTIn)\+T.

A 0 A

Rr~dVTInT

" f



EVALUATION —

Barabasi—Albert N=250, basis size=3, effective d=1
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SpectralEliminator
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Kocak, Neu, MV, Munos: Efficient learning by implicit exploration
in bandit problems with side observations, NIPS 2014

GRAPH
BANDITS
WITH SIDE
OBSERVATIONS

exploiting free observations from
neighbouring nodes




SIDE OBSERVATIONS: UNDIRECTED V10X 77
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SIDE OBSERVATIONS: DIRECTED lrrsia

Mobile Ultra
64GB micrg




SIDE OBSERVATION: ADVERSARIAL SETTING ~ &rzZica—

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

In each timestep t =1, ..., T

» Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed

> Disclosed / Not disclosed

» Learner:

» Plays action /; € [N]

> Obtain loss ¢;, of action played

» Observe losses of neighbors of /;
» Graph: disclosed

26 .. "‘/‘IJ)‘\“ :
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Full Information setting Bandit setting
» Pick an action (e.g. action A) » Pick an action (e.g. action A)
» (Observe losses of all actions » Observe loss of a chosen action

> Rr=OKT) > Rr = O(VNT)

1 £
27 B2ayiaE



UNDIRECTED GRAPHS

Side observation (Undirected case)
» Pick an action (e.g. action A)
» Observe losses of neighbors
Mannor and Shamir (ELP algorithm)
» Need to know the graph
» Clique decomposition (c cliques)
> Ry = O(VcT)
Alon, Cesa-Bianchi, Gentile, Mansour
» No need to know the graph

» Independence set of o actions

> RT:(5(\/()&7T)

- [ 4
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DIRECTED GRAPHS 7
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Side observation (Directed case)
» Pick an action (e.g. action A)

» Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

» Exp3-DOM

» Need to know graph

» Need to find dominating set
> R = 6(\/ OéT)
Exp3-1X - Kocak et. al

» No need to know graph

> RT:@/(\/(XiT)

" f



EXP3-IX: IMPLICIT EXPLORATION

0000000000000000000000000000000000000000000000000000000000

Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],

2:  parameters ; € (0,1),n: > 0 fort € [T].

3: fort =1to 7T do R

4:  wy,; < (1/d)exp (—neLi—q ;) fori € [d] :
5:  An adversary privately chooses losses ¢; ; -

for ¢ € [d] and generates a graph G :

6: Wt <— chjlzl Wt 4

T pri — we i/ We ‘
8:  Choose It ~py = (pt.1,---,Pt.d)

9:  Observe graph G; E
10:  Observe pairs {¢, ¢; ; } for (I; — i) € G,
11: Ot,’i < Z(_j—)’L)EGt pt)j fOI‘Z c [d]
12: by 4 Otit_ﬁ% ﬂ{(lt_ﬁ;)egt} for i € [d]
13: end for .
Optimistic bias for the loss estimates

A 0,
]E[Et,,-] — Ot,it:|,‘ fyot,i + 0(1 — Ot,i) — gt,i — ft,i

)

“» no need for aggregation

: informatics , mathematics

0000000000000000000000000000000000000000000000

<> noneed to know the graph before

> no need to estimate dominating set

> no need for doubling trick

%
L
%
]
]
$
$
)
L

S Ry = O (\/@Tln N)

s 5
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COMPLEX ACTIONS: NEWS FEEDS Zia—
U e U o m %3}

uuuuu

uuuuu

|

news feed;

uuuuu

news f eeds news f eed3

contenty

contento

» Play m out of N nodes (combinatorial structure)

» Obtain losses of all played nodes

» Observe losses of all neighbors of played nodes

- [ 4
31 5':','1 A



COMPLEX GRAPH ACTIONS (2570

» Play action V, € S C {0,1}N, |lv|][; < mfromallve S

» Obtain losses V ¢,

» Observe additional losses according to the graph

-
Rt = O (m3/2\ ;at> — 0 (m3/2\/§77_)

s ;
32 B2eq4as



Kocak, Neu, MV: Online learning with noisy side observations, AISTATS 2016 (to appear)

GRAPH
BANDITS WITH
NOISY SIDE
OBSERVATIONS

exploiting side observations that can
be perturbed by certain level of noise




NOISY SIDE OBSERVATIONS (25000

Want: only reliable information!

1) If we know the perfect cutoff €

> reliable: use as exact

» unreliable: rubbish

then we can improve over pure bandit setting!
2) Treating noisy observation induces bias

What can we hope for?
6(\/ﬁ) 36(\/57) gé( a*T) gé(m)

(an we learn without knowing either € or o¢*?
JA T



PROTOCOL FOR NOISY OBSERVATIONS

000000000000000000000000000000000000000000000000000000000000000000000

Parameters:

set of arms [N|, number of rounds 7.
For all t =1,2,....T repeat

1. The environment picks a loss function ¢; :
IN] — [0,1] and a directed weighted graph
G; with edge weights in |0, 1].

2. Based on its previous observations (and pos-
sibly some source of randomness), the learner
picks an action I; € [N].

3. The learner suffers loss ¢; p,.

4. The learner observes G; and the feedback

Cti = St,(Ii)  Lr,i + (1 - St,(It,z')) g%

for every arm i € [IN].

: informatics , mathematics

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Nothing is revealed to the learner

The weights s are revealed

The noise is bounded &<R



NOISY SIDE OBSERVATIONS (25000

> (: weighted graph
> ((&): graph with only € edges
> ot(€): independence number of G(g)

> effective independence number of G:
. .oale)

Since o < «a(l1)/1 < N

incorporating noisy observations does not hurt
O (VaT) <O (VNT)

But how much does it help?

36 22000



EMPIRICAL oc* FOR SOME GRAPHS [;Z 7 2

> kxR grid graphs with weights 1/(1+d;?) have ox* empirically bounded by a constant

> special case: if s is either 0 or € than 0(*= x/€?

> For this special case, there is a minimax regret O({(xT)/€) by Wu, Gydrgy, Szepesvari:
Online Learning with Gaussian Payoffs and Side Observations, NIPS 2015.

o* FOR RANDOM GRAPHS WITH 1ID WEIGHTS

Number of nodes Number of nodes

(b) U(3,1) weights (c) U(0, ) weights

1
Number of nodes

(a) U(0,1) weights




ALGORITHM

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization: Zo,o; = 0 for all 7 € [N].
2: fort=1to T do

3:  Set n; and ;.
4:  Construct the probability distribution p, with.
» exp( — neLi—1,)
t,i — N ~ .
Zj:l eXP( - UtLt—l,j)
5.  Play random arm I; according to p;.
6: Incur loss 4 p,.
7. Observe ci; = s¢ (1,.0)lts + (1 — 5¢.(1,.4))&e,i for
all i € [N].
8:  Observe graph G;. R
9:  Construct loss estimates ¢; ;.
10: Set Ltﬂ; = Lt—l,z’ -+ ftﬂ;.
11: end for

informatics g#”mathematics

Zia—

Naive estimate Rr =7
i _

N
D=1 PrjSt.(j.a) +

Threshold estimate R+ = O ( o T)

Ct’iH{St,(It,fi,)ZQ}

oo _
N
> i=1 PristGlfs, ;o ze ) T

t.i

WIX estimate

Sta(-[t/i') ) Ct,’l,

Z\t,i — N
D =1Prisi Gy e

g .
38 i ;l‘f.lu.)'\'-



EMPIRICAL RESULTS FOR 5X5 GRID (2570

S > nodes: 25 actions on a 5x5 grid
> weight: min{3/d%1}
> dis the euclidean distance

e o o o o > loss: alternating random walks

Adaptive learning rate

eta = 0.010000 eta =0.100000

600 600 600 '
Exp3-WIX Exp3-WIX Exp3-WIX
_________ Exp3
----- Exp3 = Exp3 p |
0F e Exp3-IXb | 000 e Exp3-Xb | i === Exp3-IXb
===~ Exp3-IXt —=== Exp3-IXt =77 Exp3-IXt

Cumulative regret

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Value of € Value of € Value of €

w0 B2



Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016 (to appear) i 8

INFLUENCE
MAXIMISATION

looking for the influential nodes
while exploring the graph




REVEALING BANDITS FOR LOCAL INFLUENCE 7l —

Unknown M = (p;j )i ;j symmetric matrix of influences :

In each timestept=1,..., T

» learners picks a node k;

> set Sy, + of influenced nodes is revealed

Select influential people = Find the strategy maximising
T

Lr = Z |5kt,t

t=1

k™ = argmaxE

The number of expected influences of node Rk is

by definition
ne=E[ISkell =) pry
j<N

Oracle strategy always selects the best
T

Z | Sk t} = arg max Try

t=1

Expected regret of any adaptive, non-oracle
strategy unaware of M

E[Rr] =E[L7] - E[L7]
o BT



REVEALING BANDITS T/

lgnoring the structure again? The best we can do is O ( Fs TN)

We aim to do better: R+ = O (vVr« TD,)

D, - detectable dimension dependent on T and the structure

» good case: star-shaped graph can have D, =1

» bad case: a graph with many small cliques.

» the worst case: all nodes are disconnected except 2
ldea of the algorithm:

» exploration phase: sample randomly to find out =~ D, nodes

» bandit case: use any bandit algorithm on these nodes

L2 Z4 {4 AP



EMPIRICAL RESULTS s
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Figure 2: Barabasi-Albert model with varying p between 0.2 and 1

» Enron and Facebook vs. Gnutella (decentralised

o EE



CONCLUSION AND NEW DIRECTIONS (570

Graph Bandits
> specific way of exploiting the problem structure to learn faster
> different settings

> smooth rewards - spectral bandits, cheap bandits

> (noisy) side observations - informed bandits

> influence maximisation - revealing bandits

New directions

> graph generators (BA, ER, ...)
> learning (with) communities - SBM
> crawling strategies

> reducing assumption on graph Rnowledge

2y,



Multi-armed Bandit Workshop 2016 at STOR-i, Lancaster University, UK
Graph Bandits: Michal Valko, Sequel, Inria Lille - Nord Europe, michal.valko@inria.fr

http://researchers.lille.inria.fr/~valko/hp/
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