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Abstract 

It has been demonstrated that turbo codes substantially outperform other codes, e.g., 

convolutional codes, both in the non-fading additive white Gaussian noise (AWGN) channel as 

well as multiple-transmit and multiple-receive antenna fading channels. Moreover, it has also 

been reported that turbo codes perform very well in fast fading channels, but perform somewhat 

poorly on slow and block fading channels of which the broadband fixed wireless access (FWA) 

channel is an example. In this paper, we thoroughly compare the performance of turbo-coded and 

convolutional-coded broadband FWA systems both with and without antenna diversity under the 

condition of identical complexity for a variety of decoding algorithms. In particular, we derive 

mathematical expressions to characterise the complexity of turbo decoding based on state-of-the-

art Log-MAP and Max-Log-MAP algorithms as well as convolutional decoding based on the 

Viterbi algorithm in terms of the number of equivalent addition operations. Simulation results 

show that turbo codes do not offer any performance advantage over convolutional codes in FWA 

systems without antenna diversity or FWA systems with limited antenna diversity. Indeed, turbo 

codes only outperform convolutional codes in FWA systems having significant antenna diversity. 
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1 Introduction 

Broadband fixed wireless access (FWA) systems enable high data rate communications 

where traditional landlines are either unavailable or too costly to be installed. These systems also 

enable operators in a competitive environment to roll-out broadband services in a rapid and cost 

effective manner [1]. In this context, broadband FWA standardisation activities have been 

performed under the auspices of the IEEE 802.16 [2] and the ETSI HIPERMAN [3] working 

groups. In particular, the IEEE 802.16a standard proposes a number of transmission techniques to 

combat multipath fading in broadband FWA systems, for example orthogonal frequency-division 

multiplexing (OFDM). This standard also proposes the use of turbo and convolutional channel 

coding techniques to further improve performance in broadband FWA systems. 

Turbo codes have been shown to be very powerful in both the additive white Gaussian noise 

(AWGN) channel [4,5] as well as in multiple-transmit and multiple-receive antenna Rayleigh 

fading channels [6-8]. Turbo codes have also been shown to perform very well in rapidly fading 

channels [9], but to perform less well in slow and block fading channels [10,11], of which the 

broadband FWA channel is an example. In rapidly fading channels, coding together with 

interleaving techniques are used to spread consecutive code bits over multiple independently 

fading blocks to improve performance. However, in slow and block fading channels coding 

together with interleaving techniques cannot in general be used in an effective manner because 

delay and latency considerations limit the depth of interleaving. This situation compromises in 

particular the performance of turbo codes because occasional deep fades cause severe error 

propagation in the iterative decoding process [12]. 

Accordingly, comparisons of the performance of turbo and convolutional codes in slow and 

block fading channels constitutes a topic of practical research interest. In particular, Hoshyar et 

al. have shown that turbo and convolutional codes perform identically in block fading channels 

with no antenna diversity [10]. In addition, Lin et al. have shown that turbo outperform 

convolutional codes in Rayleigh slow fading channels with antenna diversity only at a high 

signal-to-noise ratio (SNR) [11]. 
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In this paper, we thoroughly compare the performance of turbo and convolutional codes in 

broadband FWA systems both with and without antenna diversity. However, this work differs 

from that in [10] and [11] in that the comparisons are carried out under the condition of identical 

complexity for a variety of decoding algorithms, including the widely used log-domain maximum 

a posteriori algorithm (Log-MAP) [13] as well as the simplified Max-Log-MAP algorithm [14] 

for turbo decoding and the conventional Viterbi algorithm [15] for convolutional decoding. 

This paper is organised as follows: Section 2 introduces the system model and gives a brief 

description of the decoding algorithms used for turbo decoding and convolutional decoding, 

whist section 3 characterises their complexity. Section 4 compares the performance of turbo and 

convolutional coding under the condition of identical complexity for a variety of decoding 

algorithms in broadband FWA systems both with and without antenna diversity. Finally, section 

5 summarises the main contributions of this paper. 

2 System Model 

2.1 General Overview 

In this work, we consider systems based on OFDM transmission, which lies at the heart of 

current broadband FWA standards. We also consider single antenna FWA systems, which do not 

exploit space diversity, as well as a multiple antenna FWA systems, which do exploit space 

diversity. Figure 1 depicts the system block diagram, where TN  and RN  represent the number of 

transmit and receive antennas, respectively. 

At the transmitter, the information bits are encoded and block interleaved. We consider both 

turbo and convolutional encoders. For turbo coding, the encoder consists of the parallel 

concatenation of two recursive systematic convolutional (RSC) encoders with rate 1/2, as 

described in [4,5]. Alternate puncturing of the parity bits transforms the conventional 31  rate 

turbo code to a 21  rate turbo code. For convolutional coding, the encoder consists of an RSC 

encoder with rate 1/2. The mapper maps groups of sM2log  bits into one of sM  complex 

symbols from a unit power Ms-QAM constellation. 
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In single antenna systems ( 1=TN ), the space-time processing block does not further process 

the modulation symbols; instead, the modulation symbols are passed directly to the OFDM block. 

However, in multiple transmit antenna systems ( 1>TN ), the space-time processing block will 

further process the modulation symbols before passing them to the OFDM block. In particular, 

the space-time processor generates for each particular OFDM sub-carrier a space-time block code 

(STBC) according to the generator matrices 2G , 3G  or 4G  given by [16-18]
1
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1 Here, we consider space-time coded OFDM systems where redundancy spans space and time domains [19], rather 

than space-frequency coded OFDM systems where redundancy spans space and frequency domains [20,21]. 



 5 

where 1x , 2x , 3x  and 4x  denote modulation symbols. The rows of the matrices represent 

symbols transmitted in different time slots by a particular OFDM sub-carrier. The columns of the 

matrices represent symbols transmitted by different antennas again by the particular OFDM sub-

carrier. Essentially, a total of TNK ×  symbols obtained from the original K ′  modulation 

symbols are transmitted during K  separate time slots by TN  transmit antennas by each particular 

OFDM sub-carrier. Note that 2G , 3G  and 4G  are appropriate for two, three and four transmit 

antennas, respectively, and for an arbitrary number of receive antennas. Note also that 2G  is rate 

1=′ KK , whereas 3G  and 4G  are rate 21=′ KK . Single antenna systems (where 1=TN  and 

1==′ KK ) are a special case of multiple transmit antenna systems (where 1>TN  and 

1, >′ KK ). Thus, in the sequel both single as well as multiple antenna systems are treated under 

the same framework. 

Finally, at each transmit antenna chain, N  complex symbols corresponding to the elements 

for a particular time slot for the N  different STBC are imposed onto N  orthogonal sub-carriers 

by means of an IFFT, a cyclic prefix is inserted with duration longer than the impulse response of 

the channel to combat intersymbol interference (ISI) and intercarrier interference (ICI), and 

finally the signal is digital-to-analogue converted. 

The OFDM signal is distorted by a broadband FWA channel as well as AWGN. The 

broadband FWA channel is time-dispersive but not significantly time-varying. Hence, we assume 

that the channel is essentially constant during the transmission of a frame of data. 

At the receiver, at each receive antenna chain the signal is analogue-to-digital converted, the 

cyclic prefix is removed, and the N  complex symbols corresponding to the elements for a 

particular time slot for the N  different STBC are removed from the N  orthogonal sub-carriers 

by means of an FFT. 
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The relation between the complex receive symbols and the complex transmit symbols 

associated with the STBC conveyed by the nth OFDM sub-carriers can be written as follows
2
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where 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )



















=

KRRR

KRRR

KRRR

RRR N

n

N

n

N

n

nnn

nnn

n

L

MOMM

L

L

21

21

21
222

111

R , (5) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )



















=

KSSS

KSSS

KSSS

TTT N

n

N

n

N

n

nnn

nnn

n

L

MOMM

L

L

21

21

21
222

111

S , (6) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )



















=

KNNN

KNNN

KNNN

RRR N

n

N

n

N

n

nnn

nnn

n

L

MOMM

L

L

21

21

21
222

111

N , (7) 

and 
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2 Here, we focus without loss of generality on the first space-time block code frame. 
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Now, ( )kR j

n  denotes the complex receive symbol associated with the nth OFDM sub-carrier at 

time slot k  and receive antenna j , ( )kS i

n  denotes the complex transmit symbol associated with 

the nth OFDM sub-carrier at time slot k  and transmit antenna i , ji

nH ,  is the unit power random 

channel frequency response at the nth OFDM sub-channel from transmit antenna i  to receive 

antenna j  (note that ji

nH ,  is independent of time slot k ), and ( )kN j

n  denotes the noise random 

variable at the nth OFDM sub-channel at time slot k  and receive antenna j . The noise random 

variables are uncorrelated circularly symmetric complex Gaussian with mean zero and variance 

1/SNRnorm, where SNRnorm=SNR/NT and SNR  denotes the average signal-to-noise ratio per 

receive antenna. 

Next, the complex symbols are demapped into soft bits. In particular, the soft demapper 

computes the log-likelihood ratio (LLR) given by 
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where ( )kbm

n  is the mth bit conveyed by the kth modulation symbol associated with the STBC 

conveyed by the nth OFDM sub-carrier. The LLR in (9) is also given by 
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where +S  is the set of matrices of transmit symbols nS  such that ( ) 1=kbm

n  (i.e., 

( ){ }1: ==+ kbS m

nnS ), −S  is the set of matrices of transmit symbols nS  such that ( ) 0=kbm

n  (i.e., 

( ){ }0: ==−
kbS

m

nnS ), and the probability density function ( )
nnp SR  is given by 
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Note that the log-likelihood ratio is the sum of the a priori information and the extrinsic 

information, i.e., 
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The a priori information is equal to zero, i.e., 

 ( )( ) 0=kbL m

nA . (13) 

The extrinsic information can be further simplified for particular modulation schemes as well as 

STBC by virtue of the orthogonal properties of 2G , 3G  and 4G . For example, in the single 

antenna case ( 1== RT NN ) with no STBC ( 1==′ KK ) and with Gray coded QPSK modulation 

( 2log2 =M ) it follows that 
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In the multiple antenna case ( 12 >= RT N,N ) with the STBC specified by 2G  ( 2==′ KK ) and 

with Gray coded QPSK modulation ( 2log2 =M ) it follows that 
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Note that similar extrinsic information expressions can also be determined for other particular 

modulation schemes and STBCs. 

Finally, the soft bits (the LLRs) are block de-interleaved and decoded. For turbo coding, the 

constituent soft-input soft-output decoders use either the optimal log-MAP algorithm [13] or the 

max-log-MAP algorithm [14]. For convolutional coding, the decoder uses the conventional 

Viterbi algorithm [15]. 

2.2 Decoders Overview 

We now describe the basic ideas behind the various decoding algorithms that are necessary 

for the complexity computations. We initially consider the Viterbi algorithm used for systems 

based on convolutional codes. Subsequently, we consider both the log-MAP and the max-log-

MAP algorithms used for systems based on turbo codes.  

2.2.1 Viterbi Algorithm 

The Viterbi algorithm [15] estimates the most probable sequence of states for a received 

sequence of soft bits. A branch in the trellis diagram of the convolutional code corresponds to a 

transition from a memory state s′  at time t-1 to another state s  at time step t . The branch metric 

),( ss
tBM

′
 corresponds to the sum of the inner products between the codeword bits associated with 

the branch and the received soft bits at time step t. Moreover, a path in the trellis diagram 

corresponds to a series of interconnected branches. The path metric corresponds to the sum of the 

branch metrics of the branches that compose the path. As the path progresses through the trellis, 
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subsequent branches join the path so that the path metric changes accordingly. If two paths merge 

to a state s  at a time step t , the Viterbi algorithm selects the path with the highest metric, the 

survivor path, and disregards those with lower metrics. The path metric of the survivor path at a 

time step t  for a state s , )(s
tPM , is given by 

 )  ,max( ),()(
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where s′  and s ′′  correspond to the states of the competing paths at time step 1−t . This add-

compare-and-select process yields maximum likelihood (ML) decisions.  

2.2.2 BCJR algorithm 

Although the Viterbi algorithm yields ML decisions, it can neither produce reliability values 

(LLRs) associated with the output decoded bits nor it can exploit a priori information associated 

with the input information bits. However, these two processes are of utmost importance to enable 

the constructive information exchange between the two component decoders for successful 

iterative decoding of turbo codes. Berrou et al. [4] have proposed the use of a maximum a 

posteriori (MAP) decoding algorithm based on the widely known BCJR algorithm [22] for each 

component decoder in a turbo decoder In particular, the BCJR algorithm yields the following 

reliability values for a decoded bit at time step t 
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respectively, based on 

 
∑

∑

∀
−

′∀
−

′=′

′′=

s

ttt

s

ttt

ssss

sssasa

),,()()(

,),()()(

1

1

γββ

γ

 (22) 



 11 

and the term ),( sst
′γ  is calculated by considering both the branch metric at time step t  and the a 

priori information for the decoded bit, as described in more detail in [22]. The BCJR algorithm is 

considered to be extremely complex owing to the various multiplication operations as well as the 

logarithmic operations required to compute the a-posteriori LLR for each decoded bit. However, 

two simple modifications were proposed to reduce its complexity without severely compromising 

performance. 

2.2.3 Log-MAP and Max-log-MAP algorithms 

The first modification to the BCJR algorithm yields the max-log-MAP algorithm proposed 

by Koch and Baier in 1990 [14]. This modification is based on the calculation of the a-posteriori 

LLR by using the approximation 

 ( ) ),max(ln 21
21 λλλλ ≈+ ee . (23) 

 
Consequently, expressions (21) and (22) are considerably simplified, since the overall number of 

operations decreases and moreover multiplications are transformed into additions in the log-

domain. However, this modification results in consideration of only the ML path in the trellis 

through a particular state, rather than every path in trellis through this state [13]. Therefore, the 

performance of the max-log-MAP algorithm is inferior to that of the BCJR algorithm.  

Another modification yields the log-MAP algorithm proposed by Robertson et al. in 1995 

[13]. This modification is based on the correction of the approximation by using the Jacobian 

logarithm, that is 

 ( ) ( )2121 1ln),max(ln 21

λλλλ λλ −−++=+ eee . (24) 

Note that since the correction term takes only a limited number of values, look-up tables can be 

used to reduce the complexity of the computations Otherwise, if the correction term is computed 

exactly, this (exact) log-MAP algorithm is entirely equivalent to the BCJR algorithm. 
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3 Complexity Considerations 

We now consider the characterization of the complexity of the various decoding algorithms. 

We will follow the conventional approach in the field of coding theory, where the complexity of 

a decoding algorithm is measured in terms of the total number of computational operations 

[13,23], such as additions, subtractions, multiplications and divisions. In particular, similarly to 

[24], we express the complexity of the various basic operations in terms of that of an addition 

operation. Hence, we ultimately express the complexity of log-MAP, max-log-MAP and the 

Viterbi decoding algorithms in terms of the total number of equivalent additions executed. This 

approach delivers results with wider applicability, since the complexity measure is not tied to 

specific hardware implementations. 

The basic operations performed by the various decoding algorithms include addition (ADD), 

subtraction (SUB), multiplication by ±1 (MUL), division by 2 (DIV), comparison (CP), max(x,y) 

or min(x,y) (MAX) and table look-up (LKUP). The ADD, SUB, MUL, DIV and CP operations 

correspond to one equivalent addition, whilst the MAX operation corresponds to two equivalent 

additions, since it first uses a CP operation to compare the two input values and then stores the 

result in a register [24]. The LKUP operation corresponds to three equivalent additions because 

no more than three CP operations are required to map an input value to one of the eight values 

stored in the look-up table [13] for the close approximation of the exponential factor in (24).The 

procedures performed by the log-MAP and the max-log-MAP algorithms can be classified as 

follows [13,22]: 

• Branch Metrics Calculation  (Proc. A) 

• Forward Metrics Calculation  (Proc. B) 

• Backward Metrics Calculation (Proc. C) 

• Soft Decision of the decoded bit  (Proc. D) 
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In the case of max-log-MAP, procedures B, C and D require implementation of the MAX 

function. In the case of log-MAP, these procedures also require the implementation of the MAX 

function plus one ADD, one SUB and one LKUP operations. 

The procedures performed by the Viterbi algorithm can be classified as follows [15]: 

• Branch Metrics Calculation (Proc. A) 

• Path Metrics Update (Proc. E) 

• Hard Decision Generation (Proc. G) 

Moreover, in this case procedure A does not exploit any a priori information. 

Tables 1-3 summarize the computational requirements of the various decoding algorithms as 

a function of the encoder memory order M . Note that here we assume that the constituent RSC 

encoders for turbo coding, as well as the RSC encoder for convolutional coding are rate 1/2. Note 

that we also take into account the additional complexity associated with the branch metrics 

calculations due to a priori information exploited by the turbo decoder. Finally, Table 4 

summarizes the overall complexity (in terms of the number of equivalent addition operations) of 

the various decoding algorithms. 

As an example, let us consider in detail the computational requirements of the Viterbi 

algorithm for a rate 1/2 convolutional code (see Table 3). Calculation of a branch metric requires 

2 MUL operations for the computation of the two inner products between the codeword bits 

associated with the branch and the received soft bits, and 1 ADD operation for the summation of 

the two products. Hence, procedure A requires 4×2M MUL and 2×2M ADD operations, given that 

two branches emerge from each of the 2
M
 states per time step. Moreover, calculation of a path 

metric requires 2 ADD and 1 MAX operations (see (20)). Consequently, procedure E requires 

2×2M ADD and 2M MAX operations per time step. Finally, procedure G requires only 1 LKUP 

operation for the generation of a hard bit per time step, as explained in [24]. 
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Figure 2 compares the complexity of turbo decoding and convolutional decoding for 

particular configurations. As an example, we note that the complexity of a turbo decoder with 

memory order 2=M  applying the log-MAP algorithm with 7 iterations, is comparable to that of 

a similar turbo decoder applying the max-log-MAP algorithm with 11 iterations, or to that of a 

convolutional decoder with memory order 8=M  applying the conventional Viterbi algorithm. 

Finally, we note that Wu [24] has also previously analysed the complexity of various 

decoding algorithms in terms of the number of equivalent addition operations. However, our 

analysis differs from that presented in [24] in one fundamental aspect. We take the complexity of 

a look-up operation to be equivalent to 3 equivalent addition operations, rather than the 6 

equivalent addition operations considered in [24]. Hence, our results are less pessimistic in terms 

of the number of equivalent addition operations than those in [24]. We also note that Robertson et 

al. [13] have also previously analysed the complexity of a variety of decoding algorithms, but for 

simplicity mathematical and logical operations were assumed to exhibit identical complexity. 

4 Simulation Results 

In our simulations, the convolutional encoder uses an RSC encoder with rate 21 , generator 

polynomial ( )561753,1  and memory order 8=M . The number of information bits fed to the 

convolutional encoder is 1016 , so that the number of encoded bits is 2048 . The turbo encoder 

uses two identical terminated RSC encoders with rate 21 , octal generator polynomial ( )75,1  

and memory order 2=M , and a random interleaver with size either 1021=L  or 4093=L . 

Alternate puncturing of the parity bits transforms the conventional 31  rate turbo code to a 21  

rate turbo code. In this case, the number of information bits fed to the turbo encoder is either 

1021 (for 1021=L ) or 4093  (for 4093=L ), so that the number of encoded bits is 2048  or 

8192 , respectively. The convolutional decoder uses the Viterbi algorithm. The turbo decoder 

uses either the log-MAP algorithm with 7 iterations or the max-log-MAP algorithm with 11 

iterations. Note that these configurations have identical decoding complexity. The depth of the 
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block interleaver and de-interleaver is set to be equal to 64 . In our simulations, we also use 

OFDM/QPSK signals with OFDM symbol duration sT µ8.12= , cyclic prefix duration 

sTCP µ2.3= , and 256=N  sub-carriers. Furthermore, in the simulations we focus on single 

antenna as well as multiple antenna systems based on STBCs specified by 2G , 3G  and 4G . Six 

interim broadband FWA channel models have been adopted by the IEEE 802.16a standard [25]. 

We consider the SUI3 model, which corresponds to average suburban conditions. This model 

includes three fading taps with delays 0 µs, 0.5 µs and 1.0 µs, with relative powers 0 dB, −5 dB 

and −10 dB, and with K-factors 1, 0 and 0, respectively. The delay spread is 0.264 µs and the 

Doppler spread per tap is 0.4 Hz
3
. The SUI3 channel model specifies an antenna correlation 

coefficient value equal to 0.4. However, in the simulations we will assess systems both with and 

without antenna correlation. 

Figure 3 compares the performance of various turbo-coded and convolutional-coded systems 

for both single and multiple antenna configurations for the case of frames having 2048  encoded 

bits. Here, we set the antenna envelope correlation coefficient to be equal to the nominal value of 

0.4. We note that turbo codes substantially outperform convolutional codes in the AWGN 

channel. However, the performance of turbo codes is similar to that of convolutional codes in 

single antenna broadband FWA systems. Moreover, the performance of turbo codes is also 

similar to that of convolutional codes in multiple antenna broadband FWA systems. In particular, 

we note that this is essentially the case for turbo coding based on both the log-MAP as well as the 

max-log-MAP algorithms. These results are due to the limited diversity offered both by single 

antenna as well as multiple antenna FWA channels. In single antenna FWA channels there is no 

time diversity due to the very slow time variation nature of the channel, and there is only mild 

frequency diversity due to the mild time-dispersive nature of the channel. In multiple antenna 

                                                 

3 We assume that the channel is essentially constant during the transmission of a frame of data by virtue of the low 

Doppler spread value. The error rate results are averaged over 10000 channel realisations. 
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systems, antenna correlation will also substantially limit the advantage owing to space diversity. 

Hence, the presence of frequent deep fades significantly impairs the performance of turbo codes 

owing to severe error propagation in the iterative decoding process [12]. 

Figure 4 also compares the performance of various turbo-coded and convolutional-coded 

systems for both single and multiple antenna configurations again for the case of frames having 

2048  encoded bits. However, here we set the antenna envelope correlation coefficient to be 

equal to zero, i.e., the ideal situation. In this case, as the number of antennas is increased (i.e. as 

antenna diversity is increased), turbo codes eventually substantially outperform convolutional 

codes. In fact, as the number of antennas is increased the underlying fading channel will approach 

a non-fading AWGN channel, where turbo codes are known to substantially outperform 

convolutional codes. 

Figure 5 and Figure 6 compare the performance of turbo-coded systems for various single 

antenna and multiple antenna system configurations for frame lengths of 2048  and 8192  

encoded bits.  Figure 5 applies to systems with an antenna envelope correlation coefficient of 0.4, 

whereas Figure 6 applies to systems with zero antenna envelope correlation coefficient. In 

AWGN channels an increase in the length of the turbo code frame, i.e., an increase in the length 

of the random interleaver employed by the turbo encoder, gives rise to substantial performance 

improvements. In contrast, an increase in the length of the convolutional code frame does not 

generally result in performance improvements [15]. Yet, we note that in broadband FWA 

channels the length of the frame does not change the nature of the previous trends. In particular, 

in low diversity FWA systems (i.e., systems with a low number of antennas) turbo codes with 

different frame lengths perform identically. In high diversity FWA systems (i.e., systems with a 

high number of antennas) turbo codes with a longer frame outperform turbo codes with a shorter 

frame, and consequently also outperform convolutional codes. 

To conclude, we observe that very high order diversity systems are required for turbo-coded 

systems to outperform convolutional-coded systems. However, this may be difficult to achieve in 
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FWA systems for various practical and economic reasons. Specifically, the FWA channel is not 

significantly time-dispersive or time-varying and consequently cannot offer much frequency or 

time diversity. Moreover, antenna correlation severely limits spatial diversity. Additional results  

(not presented here) also suggest that the trends observed for the specific turbo and convolutional 

codes considered in this work also apply to other turbo and convolutional codes with identical 

complexity. 

5 Conclusions 

In this paper, we have compared the performance of turbo-coded and convolutional-coded 

broadband FWA systems both with and without antenna diversity under the condition of identical 

complexity for a variety of decoding algorithms. We have shown that turbo coding does not offer 

any performance advantage over convolutional coding for FWA systems without antenna 

diversity or for FWA systems with limited antenna diversity. We have also shown that turbo 

coding only outperforms convolutional coding in FWA systems having significant antenna 

diversity. These results are of practical interest for the deployment and design of high 

performance broadband FWA systems. 
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Figures 

 

Figure 1: Communications system model. 
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Figure 2: Complexity comparison between turbo decoding and convolutional decoding.
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Figure 3: Error rates for various turbo-coded and convolutional-coded OFDM systems for both 

single and multiple antenna FWA configurations for frames having 2048  code bits. Antenna 

envelope correlation coefficient is set to 0.4. 
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Figure 4: Error rates for various turbo-coded and convolutional-coded OFDM systems for both 

single and multiple antenna FWA configurations for frames having 2048  code bits. Antenna 

envelope correlation coefficient set to zero. 
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Figure 5: Error rates for turbo-coded OFDM systems for both single and multiple antenna FWA 

configurations for frames having 2048 or 8192  code bits. Antenna envelope correlation 

coefficient is set to 0.4. 
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Figure 6: Error rates for turbo-coded OFDM systems for both single and multiple antenna FWA 

configurations for frames having 2048 or 8192  code bits. Antenna envelope correlation 

coefficient is set to zero. 
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Tables 

Table 1: Computational requirements of the log-MAP algorithm. 

 ADD SUB MUL DIV MAX LKUP 

Procedure A 4×2M − 6×2M 2×2M − − 

Procedure B 3×2M 2M − − 2M 2M 

Procedure C 3×2M 2M − − 2M 2M 

Procedure D 6×2M−2 2×2M−1 − − 2×(2M−1) 2×(2M−1) 

 

Table 2: Computational requirements of the max-log-MAP algorithm. 

 ADD SUB MUL DIV MAX LKUP 

Procedure A 4×2M − 6×2M 2×2M − − 

Procedure B 2×2M − − − 2M − 

Procedure C 2×2M − − − 2
M
 − 

Procedure D 4×2M 1 − − 2×(2M−1) − 

 

Table 3: Computational requirements of the Viterbi algorithm. 

 ADD SUB MUL DIV MAX LKUP 

Procedure A 2×2M − 4×2M − − − 

Procedure E 2×2M − − − 2
M
 − 

Procedure G − − − − − 1 

 

Table 4: Complexity of the decoding algorithms. 

 Number of Equivalent Additions 

Log-MAP algorithm 48×2M−13 

Max-log-MAP algorithm 28×2M−3 

Viterbi algorithm 10×2M+3 

 

 


