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We revisit the expression for the minimum Hamming weight of the output of a 

constituent convolutional encoder, when its input is a weight-2 sequence. The 

new expression particularly facilitates the calculation of the effective free 

distance of recently proposed schemes, namely non-systematic turbo codes 

and pseudo-randomly punctured turbo codes. 

Introduction: Several authors [1, 2] have agreed that the performance of turbo codes 

[3] at the error floor region is largely determined by the weight-2 input minimum 

distance, which corresponds to the minimum Hamming weight among all codeword 

sequences generated by input sequences of weight two. If a turbo code T consists of 

N parallel concatenated convolutional codes separated by uniform interleavers, its 

weight-2 input minimum distance T
2d , which is also referred to as the effective free 

distance of T, can be written as [4, 5] 
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where )(
2

kd  is the weight-2 input minimum distance of the k-th constituent code.  

Bounds on the weight-2 input minimum distance 2d  of a convolutional code as well 

as exact expressions are provided in [1, 4, 6]. Nevertheless, the exact expressions 

are accurate only when either the impulse response of the code is known [6] or the 
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structure of the code meets particular criteria [1, 4]. Recently, Banerjee et al. [5] 

demonstrated that non-systematic turbo codes using quick-look-in (QLI) convolu-

tional codes as constituent codes, can achieve lower error floors than those of 

conventional systematic turbo codes. Unfortunately QLI codes do not always meet 

the conditions of [1, 4], hence the corresponding expressions cannot be used to 

determine their weight-2 input minimum distances. In this Letter we relax the 

conditions of [1, 4] and we present expressions which allow the accurate calculation 

of 2d  for a wider set of convolutional codes. 

Preliminaries: Let (r, 1, ν) represent a rate-1/r convolutional code of memory ν and 

)](/)(),...,(/)([)( )()1( DDDDD r QPQPG =  be the generator matrix of the recursive 

encoder for that code, where )(
0

)(
1

)()( )( iiii pDpDpD +++= ν
νP  denotes the i-th 

feed-forward generator polynomial and 01)( qDqDqD +++= ν
νQ  corresponds 

to the feedback generator polynomial, with coefficients }1,0{,)( ∈j
i

j qp . Note than 

none of the feed-forward polynomials is equal to )(DQ , whilst 1)(/)()1( =DD QP  

only if the convolutional code is systematic. 

It was shown in [1, 4] that the weight-2 input minimum distance of a (r, 1, ν) recursive 

convolutional code is given by )22( 1
2

−+= νrd  if the code is non-systematic and 

)22)(1(2 1
2

−+−+= νrd  if the code is systematic. In both cases, it has been 

assumed that )(DQ  is a primitive polynomial of order ν≥2, i.e., ν=)(deg DQ , while 

)()( DiP  is a monic polynomial with constant term 1, i.e., 1)(
0

)( == ii ppν . 

Consequently, ν== )(deg)(deg )( DDi QP . 

Calculation of 2d  when )(deg)(deg )( DDi QP ≤ : As previously, we assume that 

)(DQ  is a primitive polynomial of order ν≥2, since it has been shown that turbo 
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codes using primitive feedback generator polynomials yield an excellent 

performance [1]. Let u(t) denote the input bit to the encoder at time step t and rm(t) 

represent the output of the m-th memory element, where m=1,…,ν. Initially, we focus 

on the i-th non-systematic output of the encoder. The corresponding output bit 

)()( ty i  can be expressed as follows 
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where the symbol ⊕ denotes the mod-2 addition. We have also adopted the notation 

)(
21

i
ttd →  to represent the weight of the sequence generated by the i-th non-systematic 

output of the encoder during the transition from time step t1 to time step t2, i.e., 
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If L is the period of the primitive feedback polynomial )(DQ , the two nonzero bits of 

a weight-2 input sequence should be separated by L-1 zeroes such that the encoder 

returns to the zero state [7], i.e., 0)( =trm  for all m. Let u(0)=u(L)=1, while 

u(1)=…=u(L-1)=0. Note that the weight-2 input minimum distance of the i-th non-

systematic output of the encoder is quantified by )(
10

i
Ld +→ . For convenience, we 
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L dddd +→→→+→ ++=  and compute each term separately: 

 t: 0→1 – Assuming that the encoder was initialised to the zero state, we obtain 

)(
0

)()(
10 )0( iii pyd ==→  from (2) and (3), since 1)0( =u  and 0)0()0(1 === νrr  . 

 t: 1→L – Let us first consider the case when t: 1→L+1 and u(L)=0. Owing to the 

properties of primitive polynomials, the output stream is a pseudo-noise 

sequence having weight 1)(
11 2 −
+→ = νi

Ld , given that )()()( DDi QP ≠  [7]. 

Furthermore, when t=L, the encoder is in state 1 [7], i.e., 0)()( 11 === − LrLr ν  

and 1)( =Lrν . Hence, if u(L)=0 is the input bit, the encoder outputs 



 4 

)(
0

)()( )( iii ppLy ⊕= ν , which is also the value of )(
1

i
LLd +→ . However, an equivalent 

and more convenient form of the previous expression for the output weight is 
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L ppd −−= −
→ ν

ν , inde-

pendently of the value of u(L). 

 t: L→L+1 – We established that if t=L then 1)( =Lrν , while the output of the 

remaining memory elements is zero. That is when the second nonzero bit, 

namely u(L)=1, of the weight-2 sequence is input to the encoder and forces it to 

return to the zero state. Using (2) and (3), we find that )()()(
1 )( iii

LL pLyd ν==+→ . 

Thus, the weight of the i-th non-systematic output sequence of the encoder for a 

weight-2 input sequence can be expressed as  
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using the fact that the value of a binary number, such as )(i
jp , does not alter when it 

is raised to a power (e.g., )(2)( )( i
j

i
j pp = ). The overall weight-2 input minimum 

distance of the rate-1/r recursive convolutional encoder can be obtained as follows 
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Extension to pseudo-randomly punctured codes: Pseudo-random (PR) puncturing, 

initially introduced in [7], is a method to increase the rate of a constituent recursive 

systematic convolutional code with generator matrix G(D)=[1, P(D)/Q(D)] from 1/2 to 

1 by periodically eliminating particular bits from its output. Note that )(DQ should be 

primitive. It has been shown [8] that a rate-1/2 turbo code consisting of a rate-1 PR-
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punctured convolutional code and a rate-1 non-systematic convolutional code, yields 

a lower error floor than that of its rate-1/3 parent code. Following a similar reasoning 

as in the previous section, we can express (the proof has been omitted) the weight-2 

input minimum distance of a PR-punctured convolutional code (1, 1, ν)  as 

 ν
ν ppd 0

2
2 22 += − . (6) 

Conclusion: In this paper we expressed the weight-2 input minimum distance of a 

rate-1/r convolutional code as a function of the coefficients of its feed-forward gene-

rator polynomials )()( DiP , with i=1,…,r, for a primitive feedback generator 

polynomial )(DQ . This expression can be used to accurately compute the effective 

free distance of both conventional systematic turbo codes as well as non-systematic 

turbo codes [5, 8] that consist of convolutional codes with  )(deg)(deg )( DDi QP ≤ . 
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