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Proper selection of a signal-to-noise ratio (SNR) threshold largely determines the 

tightness of an approximation to the frame error rate of a system over a quasi-static 

fading channel. We demonstrate that the expression for the optimal threshold value, 

which has been established for single-input single-output (SISO) channels, remains 

unchanged for the general case of multiple-input multiple-output (MIMO) channels. 

Introduction: In various practical systems, such as fixed wireless access networks, the 

communication channel experiences extremely slow fading conditions that can be 

characterised by the quasi-static fading model. In quasi-static fading, the 

instantaneous SNR at the receiver, denoted as γ, remains constant for the duration of a 

frame but changes independently from frame to frame. El Gamal and Hammons [1] 

demonstrated that the average error probability of an iteratively decoded scheme over 

a SISO quasi-static fading channel can be accurately approximated by 
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where [ ]γγ Ε=  is the average SNR and wγ  is a SNR threshold, based on which the 

error probability of the iterative decoder is either one or zero depending on whether 



the instantaneous SNR value is less than or greater than wγ , respectively. For systems 

employing turbo codes, wγ  coincides with the convergence threshold of the iterative 

decoder [1, 2]. 

Motivated by the work of El Gamal and Hammons [1], Rodrigues et al. [2] and 

Bouzekri and Miller [3], we demonstrated in [4] that not only iterative but non-

iterative and even uncoded schemes over SISO quasi-static fading channels can also 

be characterised by a threshold based on which their frame error rate (FER) can be 

accurately approximated by ),(~
w

Q
eP γγ . In particular, we showed that the SNR 

threshold is given by 
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where )(γG
dP  is the probability of successful frame detection in additive white 

Gaussian noise (AWGN).  In this Letter we investigate whether the expression for the 

SNR threshold still holds in the general case of MIMO quasi-static fading channels. 

Preliminaries: We consider a MIMO channel having NT inputs and NR outputs. The 

transmitter uses space-time block coding [5], while the receiver coherently combines 

the N=NTNR independent fading paths. If γ now corresponds to the instantaneous SNR 

at the output of the combiner, its probability distribution is given by [2, 6] 
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where Rγ  is the average SNR per receive antenna. The approximated FER of the 

system for MIMO quasi-static fading channels can then be obtained from [2] 
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It is important to notice that ),(~
wR

Q
eP γγ  is accurate for low to moderate values of N; 

for large N, the MIMO channel effectively collapses into an AWGN channel, for 

which the framework for threshold-based FER analysis does not apply. In the 

following section, we derive an exact expression for the optimal SNR threshold wγ  

for the case when (4) can be used to closely approximate the FER of a MIMO system. 

SNR threshold evaluation: If an appropriate value for the SNR threshold is selected, 

we expect the approximated FER of a MIMO system on a quasi-static fading channel 

to closely represent the exact FER, denoted as )( R
Q

eP γ , for a wide range of Rγ  

values. Ideally, ),(~
wR

Q
eP γγ  should be identical to )( R

Q
eP γ , so that 
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We set RTN γλ /=  and express )( R
Q

eP γ  and ),(~
wR

Q
eP γγ  as functions of λ , that is 

)(λQ
eP  and ),(~

w
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eP γλ , respectively. The change of variable will not have an effect 

on (5). Consequently, the area under the graph of )(λQ
eP  should be equal to the area 

under ),(~
w

Q
eP γλ , for ]0[ Λλ ∈  when ∞→Λ . We can thus write 
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Taking into account that )(λQ
eP  can be computed by integrating the FER in 

AWGN, represented by )(λG
eP , over the distribution )(γλp  given in (3) for 

RTN γλ /=  [6], we expand the first integral in (6) into  
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Note that we have expressed the frame error probability in terms of the probability of 

successful frame detection in AWGN, that is )(1)( λλ G
d

G
e PP −= . Substituting )(γλp  

into (7) gives 
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Careful inspection of the function in the double integral reveals that it describes a 

Poisson distribution; the integral of this probability distribution type from zero to 

infinity is equal to one. Therefore, 
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Furthermore, if we define 
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where x is a real number and n is a positive integer, we can determine that 
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based on tables in [7]. Consequently, the first integral in (6) assumes the form 
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The second integral in (6) can be evaluated as follows 
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If we substitute (12) and (13) into (6), we observe that terms Λ and -Λ cancel 

each other out. Furthermore, if we take the limit as ∞→Λ , all terms containing Λ−e  

are eliminated since ∞→−Λe . The remaining terms give 
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which can be further reduced to (2); hence, the expression for the SNR threshold of a 

system is the same for both SISO and MIMO quasi-static fading channels. A practical 

methodology for the evaluation of wγ , as well as computational complexity aspects 

for the proposed threshold-based analysis, are discussed in [5]. 

Conclusion: We have considered the general case of a space-time coded system over 

a MIMO quasi-static fading channel and we have demonstrated that the optimal SNR 

threshold, for which an approximation to the system’s FER is tight, depends on the 

probability of successful frame detection in AWGN, normalised by the squared SNR. 
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