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Abstract

In environmental applications it is common for the extremes of a variable to be

non-stationary, varying systematically in space, time or with the values of covariates.

Multi-site datasets are common, and in such cases there is likely to be non-negligible

inter-site dependence. We consider applications in which multi-site data are used

to infer the marginal behaviour of the extremes at individual sites, while adjust-

ing for inter-site dependence. For reasons of statistical efficiency, it is standard to

model exceedances of a high threshold. Choosing an appropriate threshold can be

problematic, particularly if the extremes are non-stationary. We propose a method

for setting a covariate-dependent threshold using quantile regression. We consider

how the quantile regression model and extreme value models fitted to threshold

exceedances should be parameterized, in order that they are compatible. We ad-

just estimates of uncertainty for spatial dependence using methodology proposed

recently. These methods are illustrated using time series of storm peak significant

wave heights from 72 sites in the Gulf of Mexico. A simulation study illustrates the

applicability of the proposed methodology more generally.

Keywords: Extreme value regression modelling; dependent data; quantile regression;

threshold selection; wave heights.
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1 Introduction

This article deals with regression modelling of extreme values in the presence of spatial

dependence. In environmental applications it is common for the extremes of a variable to

be non-stationary, varying systematically in space, time or with the values of covariates.

Regression modelling is a natural way to account for such effects. For reasons of statistical

efficiency, modern extreme value analyses model the number of magnitude of exceedances

of a high threshold. We argue that if there is clear non-stationarity in extremes a non-

constant threshold should be set that reflects the non-stationarity. We propose a method

for setting covariate-dependent threshold using quantile regression. We also consider how

the quantile regression model and extreme value models fitted to threshold exceedances

should be parameterized, in order that they are compatible. Often response data are

not independent, even once the effects of covariates have been taken into account. For

example, in multi-site data-sets extremal behaviour, and systematic effects on extremal

behaviour, will tend to be similar at neighbouring sites. It is advantageous to model si-

multaneously data from different sites and thus improve precision of estimation. However,

inferences must take proper account of spatial dependence.

1.1 Threshold modelling of non-stationary extremes

Extreme value theory provides asymptotic justification for particular families of models

for extreme data. A key result for stationary extremes (Leadbetter et al., 1983) suggests

a GEV distribution as a working model for the maximum of a large number of identi-

cally distributed random variables. Thus we might model annual maxima as having a

GEV(µ, σ, ξ) distribution. Further theory (Pickands, 1975) suggests that, when a large

threshold u is exceeded, the amount by which it is exceeded be modelled by a Generalized
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Pareto, GP(σu, ξ) distribution, where the scale parameter σu = σ + ξ(u− µ). An equiv-

alent formulation is the non-homogeneous Poisson process characterization of threshold

exceedances, developed by Pickands (1971) and first used for practical application by

Smith (1989). The parameterization of this model, in terms of the GEV parameters µ, σ

and ξ, is invariant to u, a property which is advantageous if a non-constant threshold is

used. For threshold models local dependence produces threshold exceedances that occur in

clusters in time. Standard methods for non-stationary extremes use regression modelling

(Davison and Smith, 1990), in which the parameters of the extreme value model depend on

the values of covariates, although typically ξ is taken to be constant. The main aim of an

extreme value analysis is the estimation of extreme quantiles. Suppose that, conditional

on the values of covariates, annual maxima Ym have a GEV(µ, σ, ξ) distribution. The con-

ditional N year return level qN , exceeded approximately once on average every N years,

satisfies P (Ym > qN) = 1/N and is given by qN = µ+ σ
[
{− log (1− 1/N)}−ξ − 1

]
/ ξ.

There are strong arguments against using a constant threshold for non-stationary ex-

tremes. For a given covariate value we need the threshold to be large enough that

exceedance magnitudes can be modelled using a GP distribution. A threshold that is

sufficiently large for this purpose at one covariate value may be rather low for another

covariate value. Another argument is one of statistical design: to improve the precision

of estimation of a covariate effect we should aim to have exceedances spread as far across

the observed values of the covariate as possible. Setting a constant threshold will tend to

narrow the range of covariates for which there are exceedances.

In this paper we use quantile regression (Koenker and Bassett, 1978; Koenker, 2005) to set

a threshold for which the probability p of threshold exceedance is approximately constant

across different values of the covariates, in this case across different spatial locations. We

argue that it is more logical to model the threshold for constant p than to model how
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the probability of exceedance of a constant threshold varies with covariates. Theoretical

work will quantify the extent to which this is an optimal strategy. This is described in

the discussion section of this paper.

Covariate-dependent thresholds for non-stationary extremes have previously been set in

an ad hoc manner (Smith, 1989; Coles, 2001). Eastoe and Tawn (2009) set a threshold

based on a model fitted to all the data, extreme and non-extreme, so that the threshold

is affected by trends in typical values of the response. In contrast quantile regression

models directly covariate effects at the desired level of extremity, does not require a dis-

tributional assumption for the response data and is robust to the presence of outliers. The

parameters of quantile regression retain their statistical properties under any monotonic

transformation of the response, which may be useful in applications where a non-linear

transformation is applied to the response data (Wadsworth et al., 2010).

1.2 Spatial dependence

One way to account for spatial dependence is to model it explicitly. Recent work in this

area includes Naveau et al. (2009), Casson and Coles (1999), Cooley et al. (2007). The

multivariate extreme value methodology of Heffernan and Tawn (2004) is also applicable

to spatial problems. If interest is in the marginal distributions at the sites, it may not be

necessary or desirable to model explicitly the spatial dependence (Fawcett and Walshaw,

2007) and we may carry out a marginal analysis: ignoring the dependence initially, and

then making adjustments to test statistics and estimates of parameter uncertainty to

account for the dependence.

In section 2 we describe the GOMOS wave hindcast dataset and produce some preliminary

plots to guide later analyses. In section 3 we consider how to use the point process model
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to analyse the hindcast data. Section 3.1 gives a summary of the inferential adjustments

made for spatial dependence in the data. Sections 3.2.1 , 3.2.2 and 3.2.3 consider how to

use quantile regression to set an appropriate threshold, how to parameterize appropriately

the quantile regression model and how to choose a suitable overall level for the threshold.

The extreme value of analysis of the hindcast data is presented in section 3.3. Inferences

about return levels are presented in section 4. All the calculations and plots are produced

using R (R Development Core Team, 2009).

2 Wave hindcast data

When developing environmental design criteria for marine structures it is important to

quantify the stochastic behaviour of extreme sea states. A standard measure of sea surface

roughness is significant wave height (Hs), defined as the mean of the highest one third

of waves. When modelling Hs it is important that we capture systematic spatial effects

and that we account of the strong spatial dependence in the data (Jonathan and Ewans,

2007; Jonathan et al., 2008; Jonathan and Ewans, 2011).

The data (Oceanweather Inc., 2005) cover the period September 1900 to September 2005

inclusive, at 30 minute intervals. The hindcasts are produced by a physical model, cal-

ibrated to observed hurricane data. For a typical Gulf of Mexico location we selected

72 sites arranged on a 6 × 12 rectangular lattice with spacing 0.125 degrees (approxi-

mately 14km). For reasons of confidentiality we code longitude as 1,. . . ,12 and latitude

as 1,. . . ,6, rather than giving their true values. Over this region there are 315 hurricane

events during the period in question: an average of three events per year. For each event

for each site, we isolate the storm peak significant wave height Hsp
s , that is, the largest Hs

value observed during the event, and treat the data at each site as a discrete time series
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indexed by event number.

Figure 1 shows how the site maximum varies with longitude and latitude. The plot

suggests that the data may vary non-linearly over space. Similar effects are observed in

plots of at-site estimates of high quantiles.

latitude
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Figure 1: Site maximum of Hsp
s against longitude and latitude. The grey scale indicates

the value: the larger the storm peak the darker the shading.

Figure 2 is a plot of the network maximum against event number. A robust LOESS

0 50 100 150 200 250 300

0

5
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15

event number

H
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 / 
m

Figure 2: Network maximum of Hsp
s against hurricane event number. The horizontal

dashed line indicates the median of the series. The solid lines are a robust LOESS smooth
of the series and 95% confidence intervals.

smooth (using Tukey’s biweight function) of the series suggests a slight decrease in av-

erage storminess over the earliest third of the data, but any trend in time appears less
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pronounced than over space. We will assume in this paper that the data are temporally

homogeneous. However, there is interest in examining temporal variability of wave hind-

casts, in part because methods for measuring hurricane strength have changed over the

20th century (see, for example, Killick et al. (2010)).

Figure 3 shows that, even for pairs of sites situated at opposite points of the network,

there is strong spatial association in the storm peak values.
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Figure 3: Scatter plots of contemporaneous Hsp
s values at pairs of sites. Left: contiguous

sites (site 30: latitude=3, longitude=6 and site 31: latitude=3 and longitude=7). Right:
distant sites (site 1: latitude=1, longitude=1 and site 72: latitude=6, longitude=12).

Storm peaks have been isolated with the aim of eliminating temporal dependence in the

data. We check this informally at each site by plotting successive Hsp
s values against each

other. Inspection of these plots supports the assumption that Hs values from different

hurricane events are approximately independent. The Spearman rank correlation ranges

from 0.028 to 0.070 across sites, with median value 0.047.
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3 Extreme value modelling

We fit to the GOMOS wave data spatial regression models based on the point process

characterization of exceedances of a high threshold developed by Pickands (1971). We

consider models in which the parameters µ, σ and perhaps ξ are related to longitude and

latitude. We use quantile regression to set a threshold for which the probability p of

threshold exceedance is constant for all sites.

Let the response Yij be the storm peak significant wave height at site i in storm j, where

i = 1, . . . , 72 and j = 1, . . . , 315, and let xij be a vector of covariates relevant to Yij. In

particular, xij contains functions of the longitude and latitude of site i. Let u(xij) be the

threshold applied for a given xij. Let θ be a vector containing the parameters that relate

the GEV parameters µ(xij), σ(xij) and ξ(xij) to the covariates and let fij(yij | xij; θ)

be the conditional density of yij given xij. If, conditional on the covariate values, the

responses are independent, the likelihood function under the point process model is given

by

LI(θ) =
315∏
j=1

72∏
i=1

fij(yij | xij; θ)

=
315∏
j=1

72∏
i=1

exp

{
−1

λ

[
1 + ξ(xij)

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ(xij)}

×
315∏
j=1

∏
i:yij>u(xij)

1

σ(xij)

[
1 + ξ(xij)

(
yij − µ(xij)

σ(xij)

)]−1/ξ(xij)−1
, (1)

where λ is the mean number of observations per year, 1 + ξ(xij) [yij − µ(xij)] /σ(xij) > 0

for all yij > u(xij) and 1 + ξ(xij) [u(xij)− µ(xij)] /σ(xij) > 0 and σ(xij) > 0 for all i, j.

We fit the point process model underlying (1) by maximizing logLI(θ) with respect to θ.

In section 3.1 we consider how to adjust the ‘independence’ likelihood LI(θ) to account

for spatial dependence.
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Following Chandler (2005) we represent systematic spatial variation using a basis of Leg-

endre polynomials: φi(·), i = 0, 1, . . . (Abramowitz and Stegun, 1965). For example, if lx

represents longitude and ly represents latitude, a quadratic representation of the effects

of longitude and latitude on the GEV parameter µ is given by

µ = µ0 + µ1 φ1(lx) + µ2 φ1(ly) + µ3 φ2(lx) + µ4 φ1(lx)φ1(ly) + µ5 φ2(ly),

where φ1(lx) = (lx − 6.5)/5.5, φ1(ly) = (ly − 3.5)/2.5 and φ2(·) = 3(φ2
1(·)− 1)/2. A linear

representation is obtained if µ3, µ4 and µ5 are set to zero.

An alternative is to use non-parametric regression modelling, for example by extending the

spline-based generalized additive modelling approach of Chavez-Demoulin and Davison

(2005) to the spatial situation. However, in Chavez-Demoulin and Davison (2005) the

increased complexity and computational demands mean that thresholds were chosen in

a rather arbitrary way. The extension to the spatial context is non-trivial as smoothing

over two dimensions is more demanding of data and an additive representation. Another

possibility is the local-likelihood approach used by Butler et al. (2007) to smooth temporal

trends over space. The simpler polynomial basis approach used in the current paper is

designed to produce a reasonable and computationally tractable approximation to the

spatial structure seen in figure 1. The model diagnostics described in section 3.4 suggest

that this is adequate for the data considered in this paper.

3.1 Adjusting for spatial dependence

We estimate model parameters using independence estimating equations and a robust

estimate of the variance matrix of the resulting estimators to adjust for spatial dependence

9
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(Liang and Zeger, 1986). The ‘independence’ log-likelihood lI(θ) = logLI(θ) is given by

lI(θ) =
315∑
j=1

72∑
i=1

log fij(yij | xij ; θ) =
315∑
j=1

lj(θ;yj),

where yj = (y1j, . . . , y72 j)
′. Each of the 315 hurricane events constitutes a cluster of 72

observations. We assume that, given xij, data from different clusters (hurricane events)

are independent.

The maximum likelihood estimator (MLE) θ̂ maximizes lI(θ), that is, it is the root of

U(θ) =
∂lI(θ)

∂θ
=

315∑
j=1

∂

∂θ
lj(θ;yj) =

315∑
j=1

Uj(θ) = 0.

Suppose that θ0 is the true value of θ. We define HI to be the expected Hessian of lI(θ) at

θ0 and V to be the covariance matrix of U(θ0). HI is estimated by the observed Hessian,

ĤI , at θ̂. V is estimated by V̂ =
∑

j Uj(θ̂), justified by the independence of the score

contributions from different clusters. In regular problems as the number of clusters tends

to infinity, in distribution,

θ̂ → N(θ0, H
−1
I V H−1I ). (2)

To account for dependence within clusters Chandler and Bate (2007) scale lI(θ) so that

it has Hessian ĤA = (Ĥ−1I V̂ Ĥ−1I )−1 at θ̂. lI(θ) has the appropriate curvature at θ̂ while

retaining the general shape of lI(θ). For the extreme value models considered in this

paper, (2) holds provided that ξ(xij) > −1/2 for all xij (Smith, 1994).

In this article we use the vertically-adjusted log-likelihood

lA(θ) = lI(θ̂) +
(θ − θ̂)′ĤA(θ − θ̂)
(θ − θ̂)′ĤI(θ − θ̂)

(
lI(θ)− lI(θ̂)

)
,
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proposed in the discussion section of Chandler and Bate (2007). This has the advantage,

over a horizontal adjustment, that the adjusted log-likelihood is always defined, even

though there are constraints on the parameter space of extreme value models.

The covariance matrix in (2) is estimated by Ĥ−1I V̂ Ĥ−1I , from which adjusted standard

errors for the parameter estimates can be obtained. Approximate confidence intervals

for model parameters can be obtained by profiling lA(θ), if a symmetric interval based

on (2) is not appropriate. Nested models, with a difference in dimensionality q, can

be compared using a χ2
q distribution for the adjusted likelihood ratio statistic (ALRS)

ΛA = 2
{
lA(θ̂)− lA(θ̃)

}
, where θ̃ maximizes lA(θ) subject to the constraint imposed on

the unrestricted model to obtain the restricted model.

Previous approaches (Smith, 1990; Fawcett and Walshaw, 2007) to adjusting inferences

from extreme value models for dependence modify the null distribution of lI(θ). In

contrast, lA(θ) is defined in order to preserve the usual asymptotic distribution of the

likelihood ratio statistic. An advantage of lA(θ) is that it is multi-dimensional and, in

vector-parameter situations, can be expected to perform better than adjusting the null

distribution of lI(θ). In general neither method will recover the full log-likelihood. How-

ever, Chandler and Bate (2007) and other authors have found that adjustments of this

type work well in a wide range of problems unless the number of clusters is small. For

the data in this paper we have a large number (315) of clusters.

3.2 Modelling of threshold exceedances

In the presence of covariates, standard methods to choose a threshold depend on which

covariates are in the model for threshold exceedances. To inform this process we define, at

each site, approximate annual maxima as the largest value of successive triplets of storm
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peaks (there are on average 3 hurricane events per year) and fit GEV regression models

with covariates of Legendre polynomials of longitude and latitude. We find that a model

in which µ is quadratic in longitude and latitude, but σ and ξ are constant, is suggested.

3.2.1 Quantile regression

We wish to set a threshold for which the probability of exceedance is constant across

different values of covariates. Quantile regression (Koenker and Bassett, 1978) is used to

quantify how a given conditional quantile (or quantiles) of a response variable Y depends

on the observed values of covariates. Let yτ denote the conditional τ quantile of Y ,

satisfying P (Y 6 yτ ) = τ . In the current example, we assume that

yτ = β0 + β1 φ1(lx) + β2 φ1(ly) + β3 φ2(lx) + β4 φ1(lx)φ1(ly) + β5 φ2(ly), (3)

that is, we assume that yτ is quadratic in longitude and latitude. Suppose that we have

responses y1, . . . , yn with associated predictors yτ1 , . . . , y
τ
n. The regression parameters are

estimated by minimizing

min
β

(1− τ)
∑
yi<yτi

(yτi − yi) + τ
∑
yi>yτi

(yi − yτi )

 ,

with respect to β = (β0, β1, β2, β3, β4, β5)
′. We use the R package quantreg (Koenker,

2009) to estimate β. The presence of spatial dependence complicates model selection

and estimation of parameter uncertainty. This is the subject of current research (see,

for example Hallin et al. (2010)). As we will see in section 3.2.2, if the probability of

threshold exceedance is constant, the form of the point process model fitted implies a

particular form for the quantile regression model used to set the threshold. Therefore,

for a given point process model, we know which quantile regression model to fit, but
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subsequent inferences neglect the uncertainty due to the estimation of β.

3.2.2 Parameterization of covariate effects

The assumption that the conditional probability of threshold exceedance is constant has

consequences for the parameterization of the effects of the covariates on the extreme

value parameters. Let Y (xij) denote the response, and u(xij) the threshold applied, for

covariate xij. The probability of exceedance p(xij) = P (Y (xij) > u(xij)) for covariate

xij is related approximately to the GEV parameters via

p(xij) ≈
1

λ

[
1 + ξ(xij)

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ(xij)
. (4)

Suppose that ξ(xij) = ξ is constant. If we use quantile regression to set u(xij) so that

p(xij) = p is constant then, inverting (4),

u(xij) = µ(xij) + c σ(xij), (5)

where c = [(λ p)−ξ − 1]/ξ.

Suppose that we set u(xij) using a linear quantile regression on xij. To have the correct

functional form on the right hand side of (5), µ(xij) and σ(xij) must be linear in xij, e.g.

if µ(xij) and/or σ(xij) are quadratic in longitude and latitude then quantile regression

model (3) is indicated. The constraint σ(xij) > 0 is imposed at each covariate value. If

we take log σ(xij) to be linear in xij, to constrain functionally σ(xij) to be positive, we

should use non-linear quantile regression (Koenker and Park, 1994) to set u(xij).
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3.2.3 Threshold selection

Since the threshold u(xij) is set to achieve constant exceedance probability p, choosing

the level of the threshold amounts to choosing p. We choose the largest value of p above

which, taking into account the uncertainty in the estimates summarized by 95% confidence

intervals, the estimates appear approximately stable. We use the point process model

suggested by the preliminary GEV analysis in section 3: µ(xij) is quadratic in longitude

and latitude and σ and ξ are constant. Having identified a suitable threshold p, we then

revisit this choice of exceedance model.

Figure 4, for different thresholds p, shows MLEs for this initial point process model.

Inevitably there is some subjectivity in the choice of p. Here we choose p = 0.4. This

is a relatively large value but we should bear in mind that the raw data contain only

the largest values from each hurricane event. Indeed Jonathan and Ewans (2007) use a

constant threshold of 2.5m for these data, which equates to an exceedance probability of

0.54.

If µ(xij) is quadratic in xij then we should set the threshold using quantile regression

model (3), using τ = 0.6. The resulting threshold

ûQR = 3.310 + 0.106φ1(lx)− 0.153φ1(ly)− 0.081φ2(lx) + 0.098φ1(lx)φ1(ly)− 0.025φ2(ly), (6)

varies between 2.85m and 3.48m and produces 9075 threshold exceedances out of 22680

observations. The number of exceedances per site varies between 123 and 130, and shows

no obvious systematic variation with longitude and latitude.
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Figure 4: MLEs against probability of exceedance p for a point process model in which
µ is quadratic in longitude and latitude. The vertical lines indicate approximate (sym-
metric) 95% confidence intervals, based on adjusted standard errors. The threshold, also
quadratic in longitude and latitude, is estimated using quantile regression with exceedance
probability p. The horizontal dashed lines indicate the MLEs for p = 0.4.
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3.3 Modelling spatial variation

We consider exceedance models in which the location parameter µ(xij) is modelled as a

Legendre polynomial function of longitude and latitude and the scale σ and shape pa-

rameters are constant. The results in table 1 suggest that we use a model in which µ(xij)

is quadratic in longitude and latitude. The effect of adjusting the independence log-

likelihood for spatial dependence is to make the regression effects in µ more statistically

significant. For example, when comparing the quadratic model to the linear model, the

unadjusted LR statistic is 11.00, compared to the ALRS of 20.50. Extension to include

a quadratic form for σ(xij) has some supported from an ALRS (p-value 0.10), but the

resulting fits made little difference to the diagnostic plots presented in section 3.4. There-

fore, we proceed with the model in which σ(xij) is constant. The estimates and adjusted

standard errors are given in table 2. The adjusted standard errors for µ̂0, σ̂ and ξ̂ are much

larger than their unadjusted versions of 0.022, 0.031 and 0.011 respectively. We found that

the additional complexity of allowing the shape parameter ξ to vary spatially seems not to

be warranted (for example, extension to include a quadratic form for ξ(xij) produced an

ALRS with an associated p-value of 0.30). We have checked that these conclusions are not

sensitive to the choice of exceedance probability. An approximate 95% confidence interval

for ξ, calculated by profiling the adjusted log-likelihood, is (−0.052, 0.223). Jonathan and

Ewans (2007) obtained a point estimate of ξ of −0.098 (compared to 0.066 in the current

analysis) and a bootstrap 95% confidence interval of (−0.164, 0.015) using the same raw

data. The latter confidence interval is narrower because the threshold is set lower than

in the current analysis and because such intervals tend to be wider when ξ̂ is positive. In

addition Jonathan and Ewans (2007) use a constant threshold and do not model spatial

variation.
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3.4 Model checking

We check three aspects of the model fit: the compatibility of the threshold with the

fitted threshold exceedance model, where threshold exceedances occur and the values of

threshold exceedances.

In section 3.2.2 we observed that if the threshold u(xij) is set so that the probability

p of exceedance is constant for all observations then u(xij) = µ(xij) + c σ, where c =

[(λ p)−ξ − 1]/ξ. Comparing equation (6) and table 2, and noting that µ̂0 + ĉ σ̂ = 3.310,

shows that the threshold ûPP implied by the fitted point process model is approximately

equal to the threshold ûQR estimated using quantile regression.

We treat the threshold ûQR as fixed and examine whether ûPP is significantly different

from ûQR. An adjusted likelihood ratio test of µ0 +c σ = β̂0, µi = β̂i, i = 1, . . . , 5 produces

an ALRS of 0.07 on 6 d.f. and a p-value of 0.99999. This suggests that the threshold ûQR

is compatible with the inferences made about the parameters of the point process model,

based on this threshold. This comparison of ûPP to ûQR could be used to select the level

of the threshold.

At each site, the numbers of events between successive threshold exceedances should be

geometrically distributed with mean 1/0.4. Performing Pearson chi-squared goodness-of-

fit tests at each of the sites results in p-values that vary from 0.18 to 0.87. Due to the

strong dependence between the time series at the sites, we expect these p-values to vary

less than a random sample from a standard uniform distribution. The p-values show no

obvious systematic variation with longitude and latitude.

Figure 5 shows how the number of exceedances increases with event number ns for site 1

(longitude=1, latitude=1), with 95% envelopes based on a binomial(ns, 0.4) distribution.

Due to a series of large events around event number 50, evident in figure 2, a few points
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Figure 5: Number of exceedances against event number ns for site 1. The solid line gives
the expected number (0.4ns) of exceedances under the fitted model. The dashed lines
give the 97.5% and 2.5% quantiles of the binomial(ns, 0.4) distribution.

lie above the envelope. This may be suggestive a local periods of increased storminess

(Killick et al., 2010) not captured by the model. Otherwise, this plot does not reveal any

clear time trend. The plots for the other sites are very similar.

Figure 6 shows QQ-plots from six of the sites. The 95% envelopes have been adjusted for

the uncertainty in estimating the GEV parameters, using simulation from the estimated

normal distribution in (2). The strong spatial dependence means that neighbouring sites

have very similar QQ plots. None of the QQ-plots reveal any clear lack-of-fit.

4 Return level estimation

The solid lines in figure 7 show how the estimates, and 95% confidence intervals, of the

conditional 105 year return level q105 vary with site longitude and latitude under the fit-

ted regression model. To provide an additional model diagnostic we have superimposed

the largest of the raw data values. Since the data span 105 years we expect to see ap-

proximately 72 raw values exceed the estimates of q105: we observe 113. Strong spatial

dependence means that the distribution of this statistic is more widely dispersed than un-
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Figure 6: GP QQ-plots at ‘corner’ sites 1, 12, 61 and 72, and two sites, 28 and 44, nearer
the centre of the region. The dashed curves give the 2.5% and 97.5% quantiles of the
fitted distributions of the order statistics. The threshold is shown using dashed lines.
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der independence, so 113 exceedances does not seem excessive. The dashed lines in figure

7 give the corresponding values obtained by fitted the point process model individually

at each of the sites, using the same threshold values set for the regression model. The

uncertainty in estimating the threshold, and setting its general level, is neglected. Figure

7 shows the main advantage of pooling information over sites: typically the confidence

intervals are narrower under the regression model than the at-site intervals. Exceptions

to this occur where the at-site estimate of ξ is negative, because smaller estimates of ξ

tend to produce narrower confidence intervals for large return levels.
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Figure 7: Point estimates and 95% confidence intervals for 105 year return levels, by
longitude and latitude, based on the regression model (solid lines) and at-site estimates
(dashed lines). The 95% confidence intervals are produced by profiling the (adjusted)
log-likelihood. The grey dots are largest of the raw data values.

5 Simulation study

The wave height dataset considered in this paper is atypical because sequences of indepen-

dent storm maxima have been formed by ‘declustering’ sequences of temporally dependent

values. To illustrate the applicability of the methodology described in this paper we carry

out a simulation study in which the response data are dependent in space and time.
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The spatial dependence is based on a Schlather max-stable process (Schlather, 2002), with

Cauchy correlation structure ρ(h) =
[
1 + (h/24.90)2

]−0.67
, estimated from the wave height

data. We simulate spatially-dependent unit Fréchet variates from this fitted process. We

simulate 30 years of daily values at each site on a rectangular 4 by 4 grid that spans the 12

by 6 grid of the wave height dataset. Model fitting and simulation are performed using the

SpatialExtremes R package (Ribatet, 2010). At each site we induce temporal dependence

using a moving maxima process Yt = max
(
1
2
Ut,

1
3
Ut−1,

1
6
Ut−2

)
, where U1, U2, . . . are the

unit Fréchet variates at a given site. The series {Yt} has extremal index 1/2. Then

the {Yt} series are transformed to have GEV(µ(lx, ly), σ
d, ξ) margins, where, using the

notation of section 3, µ(lx, ly) depends linearly on the location (lx, ly) of the site via

µ(lx, ly) = µd0 + µ1 φ1(lx) + µ2 φ1(ly).

The daily GEV parameters µd0 and σd are held constant (at 0 and 1 respectively) across

all simulations as is the form of the temporal dependence at each site. Otherwise, we

consider two levels of spatial dependence: strong (based on wave height data) and spatial

independence; 2 types of covariate effects: µ1 = 2 and µ2 = −3; µ1 = µ2 = 0 (i.e. no

covariate effects); 3 levels of threshold: exceedance probability p = 0.1, 0.05 and 0.01;

and 4 values for the GEV shape parameter: ξ = −0.2, 0.1, 0.4 and 0.7. The ‘no covariate

effects’ simulations are included to provide a comparison between using quantile regression

to set a threshold for non-stationary data, and setting a constant threshold for stationary

data. The ‘spatial independence’ simulations are included because the covariate effects in

the quantile regression will be less precisely estimated than in the presence of (positive)

spatial dependence.

To each set of simulated data we fit the point process model (1) with the same covariate

effects (if any) for µ as the model from which the data were simulated. A threshold of the

form implied by (5), i.e. linear in φ1(lx) and φ1(ly) if there are covariate effects in µ and
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constant otherwise, is set using quantile regression with the probability of exceedance set

at p. The standard errors of the GEV parameters are adjusted for spatial and temporal

dependence by assuming that data from distinct years are independent, using the methods

of section 3.1.

5.1 Results

Table 3 summarizes the results (based on 1000 simulated datasets) for ξ = 0.1 for datasets

with spatial dependence and µ(lx, ly) linear in lx and ly. Similar results were obtained for

the other values of ξ in the study. The parameters in table 3 relate to annual maxima,

that is, adjustment of the location µ0 and scale σ has been made for the extremal index

of 1/2.

The regression parameters µ1 and µ2 are very precisely estimated, with very small bias.

The large precision is the result of the strong spatial dependence in the simulated data.

The negative bias observed for ξ̂ has been found in similar studies, see, for example

Fawcett and Walshaw (2007). As we would hope the 95% confidence intervals contain

comfortably the true values.

An important comparison is between the sample standard deviation of the estimates of

a parameter (st.dev.) and the mean of the adjusted standard errors (adj.se.): if the

standard errors are appropriately estimated st.dev. and adj.se should be similar. We find

that, on average, the standard errors are slightly underestimated because the uncertainty

in estimating the three parameters of the threshold has been ignored.

There is uncertainty associated with threshold selection even when setting a constant

threshold. The results (not shown) obtained when no covariates are present and a con-

stant threshold is set differ very little from those in table 3: the corresponding values of
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st.dev. and adj.se differ by at most one digit in their second significant digit. This is also

true when the comparison is made for the simulations in which there is no dependence in

space. Thus the predominant source of ignored threshold uncertainty is the general level

of the threshold rather than its regression parameters. For each set of simulated data,

the quantile regression estimates (β̂1, β̂2) are remarkably close to corresponding estimates

(µ̂1, µ̂2). This is the case for both the spatially dependent and independent simulations.

This close agreement occurs because, using the same set of data, both the quantile re-

gression used to set the threshold and maximization of the likelihood (1) estimate how

extreme quantiles vary with covariates. Close agreement between (β̂1, β̂2) and (µ̂1, µ̂2)

means that uncertainty in (β̂1, β̂2) is, to a large extent, accounted for because uncertainty

in (µ̂1, µ̂2) is quantified.

6 Discussion

We have proposed the use of quantile regression to set a threshold for extreme value re-

gression models. The quantile regression model is determined by the extreme value model

to be fitted subsequently, using the arguments in section 3.2.2. In the current example ex-

treme value parameters are modelled as a smooth function of space and therefore it makes

sense to approach the setting of a threshold in the same way, rather than setting a thresh-

old separately at each location. Recently, Kyselý et al. (2010) used quantile regression to

set a time-dependent threshold for GP modelling of declustered daily temperatures.

On-going theoretical work will investigate the efficiency of quantile regression as a thresh-

old selection strategy. For example, suppose that for given x responses are sampled

independently from a GEV(µ0 + µ1x, σ ξ) distribution and we set a threshold of the form

u0 + u1x. Standard likelihood calculations show that, if the values of x are symmetri-
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cally distributed, the asymptotic variance of the maximum likelihood estimator of µ1 is

minimized for u1 = µ1. If the x data are positively/negatively skewed then a slightly

smaller/larger value of u1 is indicated. However, if u1 = µ1 is used the loss in efficiency

is small even for highly skewed x data.

For the hindcast data we have checked that there are no significant time trends in the

location parameter µ of the model. We have also checked that for these data the Poisson

approximation to the temporal arrival process of exceedances underlying the likelihood

(1) is appropriate despite the large exceedance probability of 0.4.
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µ(xij) neg. log-lik d.f. ALRS p-value

constant 22763.20

linear 22742.59 2 34.23 3.7× 10−8

quadratic 22737.09 3 20.50 1.3× 10−4

cubic 22737.02 4 2.09 0.72

Table 1: Summary of point process modelling in which the location parameter µ is mod-
elled as a Legendre polynomial function of longitude and latitude and σ and ξ are constant.
The likelihood ratio tests compare the model with the model in the row above. d.f. =
degrees of freedom; neg. log-lik = negated maximised log-likelihood.
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µ̂0 µ̂1 µ̂2 µ̂3 µ̂4 µ̂5 σ̂ ξ̂

MLE 3.652 0.107 −0.153 −0.085 0.104 −0.024 1.885 0.066

adjusted s.e. (0.132) (0.045) (0.025) (0.024) (0.024) (0.012) (0.185) (0.069)

Table 2: Maximum likelihood estimates and adjusted standard errors for a point process
model in which µ is quadratic in longitude and latitude and σ and ξ are constant. The
threshold is quadratic in longitude and latitude.
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true value µ0=6.8 µ1=2.0 µ2=−3.0 σ=1.7 ξ=0.10

p=0.1

bias −0.0070 0.00096 −0.00025 −0.0082 −0.017

95% CI (6.3, 7.4) (2.0, 2.0) (−3.0,−3.0) (1.3, 2.1) (−0.019, 0.18)

st. dev. 0.29 0.016 0.0085 0.20 0.050

adj. se 0.27 0.016 0.0081 0.18 0.044

95% CI (0.18, 0.38) (0.012, 0.020) (0.0060, 0.011) (0.10, 0.29) (0.032, 0.061)

p=0.05

bias −0.012 0.000067 −0.00042 −0.0074 −0.015

95% CI (6.3, 7.4) (2.0, 2.0) (−3.0,−3.0) (1.3, 2.1) (−0.059, 0.22)

st. dev. 0.29 0.024 0.013 0.22 0.070

adj. se 0.27 0.024 0.013 0.19 0.060

95% CI (0.18, 0.38) (0.017, 0.032) (0.0091, 0.017) (0.097, 0.31) (0.041, 0.086)

p=0.01

bias 0.028 0.00010 −0.0016 0.031 −0.065

95% CI (6.3, 7.5) (1.9, 2.1) (−3.1,−2.9) (1.3, 2.3) (−0.25, 0.36)

st. dev. 0.33 0.065 0.034 0.26 0.16

adj. se 0.32 0.065 0.034 0.25 0.11

95% CI (0.20, 0.49) (0.040, 0.097) (0.020, 0.054) (0.14, 0.40) (0.063, 0.18)

Table 3: Simulation study results for ξ = 0.1, spatial dependence and covariates in µ.
For each p: rows 1 – estimated bias; row 2 – 2.5% and 97.5% sample quantiles of the
parameter estimates; row 3 – sample standard deviation of the estimates; row 4 – mean
of the adjusted standard errors; row 5 – 2.5% and 97.5% sample quantiles of the adjusted
standard errors.
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