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Introduction

Oceanographic time series are commonly used by engineers to characterise the ocean environ-

ment. Efficient and accurate analysis of such data is central to reliable design and operation of marine

structures. Detecting the presence of changepoints in oceanographic time-series is of particular im-

portance as statistical and engineering modelling of the ocean environment, structural loading and

response typically assume that the variability is stationary in time. In this paper we attempt to verify

this assumption for a location within the North Sea. We show that the variability is not constant

through time; instead it varies between stormy and calm seasons. We use this opportunity to compare

and contract the recently proposed PELT search algorithm with the long established Binary Segmen-

tation algorithm. We show that the PELT method clearly detects the start and end of storm seasons

whereas the Binary Segmentation algorithm does not achieve this.

The paper is organised as follows, we begin with an introduction to changepoint detection and

then review of multiple changepoint search methods. The search methods are applied to wave heights

from the North Sea and the results compared. The paper concludes with a discussion of future work.

Changepoint Detection

When considering oceanographic time series the assumption that statistical properties remain

the same throughout the series may be unrealistic. One possible way of overcoming this is to identify

a set of changepoints, between which the statistical properties of the series remain constant. A range

of different test statistics can be used to identify specific types of changes, such as changes in mean

or variance. We briefly recap the likelihood-based approach below. For a more comprehensive review

please refer to Chen and Gupta (2000) and Eckley et al. (2011).

By way of introduction, let us assume we have an ordered sequence of data, y1:n = (y1, . . . , yn).

Our model will have a number of changepoints, m, together with their positions, τ = (τ1, . . . , τm).

Each changepoint position is an integer between 1 and n−1 inclusive. We define τ0 = 0 and τm+1 = n,

and assume that the changepoints are ordered such that τi < τj if, and only if, i < j. Consequently the

m changepoints will split the data into m+ 1 segments, with the ith segment containing y(τi−1+1):τi .

Single Changepoint Detection Before considering the general problem of identifying the τ change-

point positions, we first consider the detection of a single changepoint. Detecting a single changepoint

is similar to performing a hypothesis test. The null hypothesis, H0, corresponds to no changepoint



(m = 0) whilst the alternative hypothesis, H1, consists of a single changepoint (m = 1).

We now introduce the general likelihood-ratio based approach to test this hypothesis. The

potential for using a likelihood based approach to detect changepoints was first proposed by Hinkley

(1970) who derives the asymptotic distribution of the likelihood ratio test statistic for a change in the

mean within normally distributed observations. The likelihood based approach has been extended to

changes in variance within normally distributed observations by Gupta and Tang (1987).

We can construct a test statistic which will decide whether a change has occurred. The likelihood

ratio method requires calculating the maximum log-likelihood value under both null and alternative

hypotheses. For the null hypothesis the maximum log-likelihood value is log p(y1:n|θ̂), where p(·) is a

probability density function and θ̂ is the maximum likelihood estimate of the parameters.

Under H1, consider a model with a changepoint at τ1, with τ1 ∈ {1, 2, . . . , n − 1}. Then the

maximum log likelihood for a given τ1 is

ML(τ1) = log p(y1:τ1 |θ̂1) + log p(y(τ1+1):n|θ̂2).(1)

The maximum log-likelihood value under the alternative is just maxτ1 ML(τ1). The test statistic is

λ = 2

[
max
τ1

ML(τ1)− log p(y1:n|θ̂)
]
.

The test involves choosing a threshold, c, such that we reject the null hypothesis if λ > c. If we reject

the null hypothesis, corresponding to detecting a changepoint, then we estimate its position as τ̂1 the

value of τ1 that maximises ML(τ1).

It is clear that the likelihood test statistic can be extended to multiple changes simply by

summing the likelihood for each of the m segments. The problem becomes one of identifying the

maximum of ML(τ ) over all possible combinations of τ . The next section explores existing search

methods that address this problem.

Multiple Changepoint Detection

Whilst an approach for detecting a single changepoint is very useful, in practice the assumption

of only one change within a series may be unrealistic. With the amount of data collected increasing

and time series becoming longer, it is likely that multiple changes exist within a single series. As such,

methods that can efficiently extend single changepoint methodology to search the, often very large,

solution space for multiple changepoints are vital. The search methods presented in this paper aim to

minimise,

m+1∑
i=1

[
C(y(τi−1+1):τi)

]
+ βf(m).(2)

Here C is a cost function for a segment and βf(m) is a penalty to guard against over fitting. Using the

notation from the previous section, C may be the negative log-likelihood and βf(m) may be cm. In

the following paragraphs we explore two methods that attempt to minimise (2); Binary Segmentation

and Pruned Exact Linear Time (PELT) proposed by Scott and Knott (1974) and Killick et al. (2011)

respectively.

Binary Segmentation In essence the method extends a single changepoint method to multiple

changepoints by repeating the method on varying subsets of the series iteratively. The method begins

by applying a single changepoint method to the entire data. If a changepoint is found, the data are

split at the changepoint to create two new sub-sequences. The single changepoint method is applied

to each sub-sequence and if new changepoints are found, another split is applied. The method ends



when no new sub-sequences are created and the final set of changepoints is the location of all the split

points. The pseudo-code demonstrating the implementation of the Binary Segmentation method is

given in Algorithm 1.

The Binary Segmentation search method is computationally efficient, resulting in an O(n log n)

calculation. However computational efficiency comes at the cost of exactness. The location of a

changepoint is conditional on the locations of previous changepoints. The consequence of this is that

the method does not search the entire solution space and as such is an approximation. When the

series contains few changepoints the consequence of this approximation is small. However, when there

are many changepoints or small distances between changepoints the effect of the approximation can

be pronounced.

Input: A time series of the form, (y1, y2, . . . , yn).

A test statistic Λ(·) dependent on the time series.

An estimator of changepoint position τ̂(·).
A rejection threshold C.

Initialise: Let C = ∅, and S = {[1, n]}

Iterate: While S 6= ∅

1. Choose an element of S; denote this element as [s, t].

2. If Λ(ys:t) < C, remove [s, t] from S.

3. If Λ(ys:t) ≥ C then:

(a) remove [s, t] from S;

(b) calculate r = τ̂(ys:t) + s− 1, and add r to C;

(c) if r 6= s add [s, r] to S;

(d) if r 6= t− 1 add [r + 1, t] to S.

Output: The set of change points recorded C.

Algorithm 1: Binary Segmentation search method for multiple changepoint analysis.

Pruned Exact Linear Time (PELT) This search method was introduced by Killick et al. (2011)

and balances the competing computational cost and accuracy properties. The PELT algorithm is O(n)

under certain assumptions (see Killick et al. (2011, §3.1)) and, in contrast to Binary Segmentation,

the search is exact.

The PELT method considers the data sequentially and searches the solution space exhaustively.

Computational efficiency is achieved by removing solution paths that are known not to lead to opti-

mality. The assumptions and theorems which allow removal of solution paths are explained further in

Killick et al. (2011, §3). A key assumption is that of a penalty, c, linear in the number of changepoints

m. As such the optimal segmentation is F (n) where,

F (n) = min
τ

{
m+1∑
i=1

[
C(y(τi−1+1):τi) + β

]}
.(3)

Conditioning on the last point of change, τm and calculating the optimal segmentation of the data up

to that changepoint gives,

F (n) = min
τm

{
min
τ |τm

m∑
i=1

[
C(y(τi−1+1):τi) + β

]
+ C(y(τm+1):n)

}
.(4)

This could equally be repeated for the second to last, third to last, . . . changepoints. The recursive

nature of this conditioning becomes clearer as one notes that the inner minimisation is reminiscent of



equation (3). In fact the inner minimisation is equal to F (τm) and as such (3) can be re-written as

F (n) = min
τm

{
F (τm) + C(y(τm+1):n)

}
.(5)

We start by calculating F (1) and then recursively calculate F (2), . . ., F (n). At each step we store the

optimal segmentation up to τm+1. When we reach F (n) the optimal segmentation for the entire data

has been identified and the number and location of changepoints have been recorded.

At each step the minimisation over τm covers all previous values e.g. when calculating F (3) the

minimisation covers τm = 0, 1, 2. The computational efficiency of the PELT method is achieved by

removing candidate values of τm from the minimisation at each step using Theorem 1.

Theorem 1 (Killick et al., 2011)

Assume that when introducing a changepoint into a sequence of observations the cost, C, of the
sequence reduces. More formally, we assume there exists a constant K such that for all t < s < T ,

C(y(t+1):s) + C(y(s+1):T ) +K < C(y(t+1):T ). Then if

F (t) + C(y(t+1):s) +K > F (s)(6)

holds, at any future time T > s, t can never be the optimal last changepoint prior to T .

If many candidate values of τm can be removed then the efficiency is greatly improved. In fact,

Killick et al. (2011) show that using the log-likelihood cost function for C, under mild assumptions the

computational efficiency is O(n). Pseudo-code for the PELT method is given in Algorithm 2.

Input: A time series of the form, (y1, y2, . . . , yn) where yi ∈ R.

A measure of fit C(.) dependent on the data.

A penalty β which does not depend on the number or location of changepoints.

Initialise: Let n = length of time series and set F (0) = −β, cp(0) = 0, pts = 0.

Iterate For τ∗ = 1, . . . , n

1. Calculate F (τ∗) = minτ∈(0,pts,τ∗−1)

[
F (τ) + C(y(τ+1):τ∗) + β

]
.

2. Let τ1 = arg
{

min0≤τ<τ∗
[
F (τ) + C(y(τ+1):τ∗) + β

]}
.

3. Set cp(τ∗) = [cp(τ1), τ1].

4. Set pts = argτ {F (τ) + C(yτ+1:τ∗) + β +K > F (τ∗) + β}.

Output: The change points recorded in cp(n).

Algorithm 2: PELT search method for multiple changepoint analysis.

Application to Oceanographic Data

With our test statistic and search methods defined, we now investigate potential changes in

variance for time series of measured wave height, HS . Data are recorded at several locations across

the North Sea. We focus on one specific location which we shall refer to as North North Sea (NNS).

The NNS data are recorded at a time interval of 3 hours starting on 22nd February 1973 and ending

on 8th June 2009. Figure 1(a) shows the measured wave heights for a 4 year period from 1983-1987.

The cyclic nature is clear but there also appears to be a change in variability across the series. Peaks

represent winter storm periods where wave heights are expected to increase. In particular we note

that the variability seems larger during the peaks (winters) than in the troughs (summers).

To identify if a change in variability has occurred, we first remove cycles from the data as this

affects estimation. We take first differences of the data so as not to make further assumptions. Figure

1(b) shows the (first order) difference data where it is clear that changes in variability are present.
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(a) Part of the original data
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(b) Differenced Data with PELT changepoints
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(c) Differenced Data with Binary Segmentation changepoints

Figure 1: North North Sea (NNS) Analysis (−− increase, − · − decrease in variability)

The simulation study by Eckley et al. (2011) demonstrates the ability of the Normal likelihood

method to identify changes in variability. In addition, the simulation study by Killick et al. (2011)

shows that due to the approximate nature of the Binary Segmentation method the locations of the

estimated changepoints can vary greatly from the exact PELT method.

We use the changepoint package in R (Killick and Eckley, 2010) to perform the analysis. For

a change in variance assuming a Normal distribution the alternative likelihood from equation (1)

becomes,

ML(τ ) =

m+1∑
i=1

(τi − τi−1)

log(2π) + log

 τi∑
j=τi−1+1

(yj − µ̂)2

+ 1

 .
Year 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

Start 15-11 17-09 16-11 31-08 28-08 11-09 10-09 29-09 05-09 08-08 18-09 18-09

End 18-03 30-05 18-04 03-05 29-03 27-03 21-04 29-03 09-05 21-04 31-03 28-04

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Start 10-10 27-09 13-09 29-09 15-09 13-09 09-09 08-10 04-10 14-09 22-09 23-09

End 28-03 03-05 19-04 13-04 27-04 22-05 25-04 21-04 09-04 13-04 06-06 08-05

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Start 01-12 08-10 22-10 – 23-10 16-10 11-09 12-09 24-08 17-10 09-09 26-09

End 14-04 30-04 15-03 19-04 29-03 18-05 22-04 13-03 03-05 12-04 07-04 01-02

Table 1: Start and end (dd-mm) of storm season for NNS by year

The changepoint location estimates from applying the PELT method are shown in Figure 1(b).

The vertical lines identify the estimated changepoint locations and on closer inspection it is clear

that there is a pattern of increased volatility followed by a decrease volatility. The dates of these

changepoints appear to align with the start and end of the storm period in each year. Table 1 details

the start and end dates identified for NNS, similar results were found at other North Sea locations.



We compare the above results with those obtained from the long established Binary Segmenta-

tion method, see Figure 1(c). Due to the nature of the algorithm, for the same number of changepoints

detected as the PELT method, the Binary Segmentation method finds no changes between 1995 and

2006 favouring multiple changes within storm periods in earlier years. Increasing the number of

changepoints identified rectifies this anomaly but produces multiple changes per storm season. Whilst

these extra changepoints may be of interest, for the purpose of identifying the start and end of storm

seasons, the Binary Segmentation method produces very poor results. This is due to the approximate

nature of the method and Inclan and Tiao (1994) advocate a post-processing step to try to avoid this.

Conclusion

Changepoint analysis is a useful tool in analysing oceanographic time series. Using the exact,

computationally efficient PELT method we have identified the start and end of the storm season

automatically. The PELT method is more efficient and more accurate than Binary Segmentation for

our penalty choice. PELT produces quicker and more consistent results than identification ‘by eye’ or

assuming that the variability is constant. In addition, we find no evidence to suggest that onset or

duration of winter storm season varies systematically with time.

This analysis has focussed on changes in variability within oceanographic data, this is not the

only type of change that may occur. There are many oceanographic time series that may exhibit

changes in mean, regression or rates of storms. For example, in extreme value analysis, temporal

de-clustering of dependent data is essential for reliable inference, yet can be problematic in practice.

Similarly, whilst the work here has focussed on likelihood based cost functions, we could have equally

used alternative approaches such as quadratic loss. The changepoint search approach presented here

may also prove useful for partitioning time series into a sequence of storm events for subsequent

modelling. This is left as an avenue for future research.
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