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Objectives

Problem structure:

o o yn2 . o N2
o Bivariate sample {x;}5 ;_; of random variables {X;} ._;

Covariate {9;,-}',-’;21‘]-:1 associated with each individual

o For some choices of variables X, e.g. Xi=Hs, Xo=Tp, 0120 Vi

o For other choices, e.g. X1 = Hs, Xo =WindSpeed, ;1 # 0;» in general
Objective:

@ Objective is to model the joint distribution of extremes of Xi and X; as a
function of 0

Jonathan, Ewans & Randell, EVA 2011, Lyon Conditional extremes with covariates






N, Ovi i\ct Dat OutMth

Exploratory data analysis

o Spread of Tp vs Hs different for different directions
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Outline of method

Follows Heffernan & Tawn (2004)

o Model X; and X; marginally as a function of 0

o Quantile regression (QR) below threshold
o Generalised Pareto (GP) above threshold

Transform to standard Gumbel variates X; and X,

Model X, given large values of X; using extension of conditional
extremes model incorporating covariate ¢

Simulate for long return periods

o Generate samples of joint extremes on Gumbel scale
e Transform to original scale

Jonathan, Ewans & Randell, EVA 2011, Lyon Conditional extremes with covariates



Int Mrg Cnd LmtAss RtrVIs StrVrb CncRfr GP FlIMrg QR-Frr QR-RghPnl iQR iQR-CV PIT

Marginal model for threshold exceedences

For sufficiently large threshold, Vij, the X,Js are marginally independently
distributed according to:

Pe(Xy > 551 > Uy(1)) = (1+ 0y = uy(m)) 5

where:

o ¥ij(7jx) = ¥;j(0jj, Tjx) is a quantile threshold associated with cumulative
probability 7.

o & = &(0;) and G = ¢;(05)

e ;, & and (; are smooth functions Vj

o Fourier forms estimated by maximising roughness-penalised likelihood
Use diagnostics to select an appropriate threshold level 7j,:

e Q-Q plot
o Stability of &;(0) with 6 Vj
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Unconditional marginal CDF

The unconditional cumulative distribution function for threshold excesses is:
Fi(ki) = Pr(Xj < %)
& . -+ .
= 1= (=) = v(m)) T %> ()
ij
(i — ii(11))
= T+ (tH—TL)
(Yii(7h) — Yi(1))

where Vj, {r4}5_; is a set of threshold probabilities for which quantile
thresholds v;(0, 74) have been estimated, and:

Xij < i (7jx)

H = arg min{¢;(7a) > X;}
d
with L=H —1 and K = jx*

Typically we would have {Td}gzl =0.1,0.2,...,0.9 say, and evaluate quantile
regressions for each. We would choice the smallest value for which GP gives good

marginal fit, then use quantiles corresponding to smaller values to approximate the
CDF
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Quantile regression with Fourier parameterisation

o Data {0, yi}/,

o 7 conditional quantile function Q,(7]0) = ¥(,0), where:

Y(r, 0) Z aryk cos(kO) + bryk sin(kf) and bryo 2
k=0

e Estimated by minimising criterion Q- with respect to {aryk, bryktr_o:

n

Q={r)_lnl+@~-7)>_Inl}
ri>0 r;<0

in terms of residuals:

ri=Yyi —¢(T70,') for i = 1,2,...,!1

Jonathan, Ewans & Randell, EVA 2011, Lyon Conditional extremes with covariates



Roughness-penalised quantile regression

Use penalised criterion Q; instead of Q; :
Q‘:—k = QT + )\RQT

where parameter roughness Ry, with respect to x is defined by:

Ro-

:’rwf(x)")zdx

p
Z K* (a2 i + bZyk)
k=0

Solved using linear programming



Regression quantiles

@ Transform directions to uniform prior using QR estimation
o Deciles to 80%




Cross-validatory choice of QR roughness penalty, A

o Penalty of approximately 0.1 appropriate




Transformation to Gumbel scale

Transform sample {x;}72 1j-1 to sample {x; 2
probability integral transform:

i1,j=1 on Gumbel scale using

exp(—exp(—x;)) = PH(X; < x;) = Pr(X; < X;j) from above
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Model form

On Gumbel scale, by analogy with Heffernan & Tawn (2004) we propose the
following conditional extremes model:

(XilX; = x5, ® = ¢) = apx; + X * (s + 06 Z) for x; > 9f (6;,75)

where:

o ¢(0;,72) is a high directional quantile of X; on Gumbel scale, above
which the model fits well

@ ay € [0, 1], ,3(;5 c (*OO7 1], oy € [0,00)
@ Z is a random variable with unknown distribution G

o Z will be assumed to be approximately Normally distributed for the
purposes of parameter estimation

Settings:

o Ina (Hs, Tp) case, ¢ = 6; £ 0, and dependence is assumed a function of
absolute covariate

o In a (Hs,WindSpeed) case, ¢ = 0y — 0;, and dependence is assumed a
function of relative covariate
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Fourier parameterisation of conditional model

Defining {n}_; to be {a, 8, 1,0}, we assume Fourier form with ¢:

P
n(¢) = D anscos(sp)+ byssin(s) and by, £ 0
s=0

Parameter roughness R, with respect to ¢ is defined by:

27 // P
R, = / (0 (6))2d6 = 3 s*(ad,. + b2.,)
s=0

Total solution roughness R, (w) (for w s.t. 3+ w, = 1 in general):

4
Ry =R(w) = Zer"?r
r=0
Since it is reasonable to expect that ay € [0,1], B4 € [0,1), ug € —%, %] (residual

mean should be near zero) and o4 € (0,1] (o just relative scale, absolute scale given
by VarZ), we set w; = wp = w3 = wg = % for simplicity. We therefore have only one
overall roughness tuning parameter.
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Penalised likelihood

For sample {xi, X, ¢i} /=1 corresponding to threshold exceedences {x;}7; of
z/)jG, negative log likelihood ¢ is given by:

x 2
Zlogs, ( Ik2, mi)

where:

mi = mi(xi, 1) = o(di)xi + p(di)x

o= sl 8 = o(g0)x]
Penalised negative log likelihood £* is given by

=0+ AR,

Imposing non-negativity: We choose to express \/«, v/ and /o as Fourier series so

that their squares are non-negative. Roughness penalty estimated using
cross-validation.
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Parameter estimates

@ MLE in green; 1000 bootstrap resamples (median in red, 95% band in
magenta)













The limit assumption required to justify the conditional model is:

x 70X — o) — 1o

Pr( <zIXi=x,9 =¢) = G(z) as x; = ©

9¢
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Estimating Tp associated with extreme quantile of Hg

Given parameter estimates and sample of residuals:
o Estimate quantiles of Tp given any quantile of Hs on Gumbel scale
(Tp|Hs = h,© = 0) = Gsh + h* (fio + 59 Z) for h > °(0,75)

@ Transform to original scale

Compare with model ignoring covariate effects
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RN 7p|fs = h iHs = h iTp|Hg = h iZNoCvr iMap
Conditioning variate Hs with tail probability = 0.01

@ Exceedence probability = 0.01 with covariate (red) and without (grey)




NN 7p|fs = h iHs = h iTp|Hg = h iZNoCvr iMap
Conditional Tp corresponding to Hs with tail probability = 0.01

e With covariate (median (red), 95% band (magenta)), without (grey)

@ Tp with exceedence probability = 0.01 shown in green



@ Directional variation clear



NN 7p|fs = h iHs = h iTp|Hg = h iZNoCvr iMap
Conditional Tp corresponding to Hs with tail probability = 0.01

o With covariate (median (red), 95% band (magenta)), without (grey)
@ Hs with exceedence probability = 0.01 shown in white



Illustrative response transfer function

@ Characteristic of roll or heave response of floating structure
R 1 27

AR . w=—
Hs /(1 —w?) + (kw)? Tp




Conditional extreme response: with direction

@ Response with covariate effect (median in red, 95% limits in magenta) and
without (grey) for Hs with tail probability = 0.01
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Simulation under the model

The procedure for simulating from the conditional extremes model with
covariates is as follows:

@ Sample a value 6y
@ Sample a value ¢s
@ Sample a value x5 of X from its Gumbel distribution
If x5 > ¢Jg(05j : 7'12):
e Sample xg from the estimated conditional model
Else:

o Sample a pair of values {xq, Xsj} from the subset of the original sample (of
non-exceedences of 1/}1-6)

@ Transform from Gumbel to original scale
G Gy.
If x5 > wj (051'77]'*)'
o Apply probability integral transform
Else:

o Find pair {Xs, Xs;} corresponding to {xg,xs;} in original data
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Conditional extreme response: kernel density estimate

@ Response density with covariate effect (red) and without (grey) for
exceedences of Hs with tail probability = 0.01
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Conclusions and references

Conclusions
o Extension of conditional extremes model to include covariate effects
@ Requires approach to marginal estimation with covariate (QR used here)

@ Makes engineering application of conditional extremes model feasible,
particularly for floating structures
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Thanks for listening
philip.jonathan@shell.com
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