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Uncertainties in Extreme Wave
Height Estimates for
Hurricane-Dominated Regions
Inherent uncertainties in estimation of extreme wave heights in hurricane-dominated
regions are explored using data from the GOMOS Gulf of Mexico hindcast for 1900–
2005. In particular, the effect of combining correlated values from a neighborhood of 72
grid locations on extreme wave height estimation is quantified. We show that, based on
small data samples, extreme wave heights are underestimated and site averaging usually
improves estimates. We present a bootstrapping approach to evaluate uncertainty in
extreme wave height estimates. We also argue in favor of modeling supplementary indi-
cators for extreme wave characteristics, such as a high percentile (95%) of the distribu-
tion of 100-year significant wave height, in addition to its most probable value, especially
for environments where the distribution of 100-year significant wave height is strongly
skewed. �DOI: 10.1115/1.2746401�
Introduction
Environmental design criteria for offshore facilities have inher-

nt uncertainties. These uncertainties are a function of both the
limate variability at a location and the amount of data available
or modeling and estimating design criteria �e.g., �1��. In regions
uch as the Gulf of Mexico and off the North West Shelf of Aus-
ralia, extreme sea states are associated with hurricanes, but these
ccur relatively infrequently �by comparison to extra-tropical
torms in the North Sea, for example�. Moreover, hurricanes are
elatively small scale by comparison to extra-tropical storms and,
s a result, hurricane track has an important influence on severity
f sea state at a particular location.

In the Gulf of Mexico, site averaging is used to increase the
ample size for modeling and to account for randomness of storm
rack �2�. However, hurricane data from even quite largely sepa-
ated locations are highly correlated. As a result, it is not straight-
orward to determine the reliability �or, equivalently, the degree of
ncertainty� associated with design criteria derived from the site-
veraging approach.

In this paper, we consider uncertainties of extreme value esti-
ates for hurricane regions, particularly the Gulf of Mexico, mo-

ivated by the site-averaging approach. Analysis of illustrative
indcast data is reported, together with results of simulations us-
ng realistic extreme value models, to examine the effect of
ample size and intersite correlation on estimates for extremes and
ncertainties associated with those estimates. For this purpose, it
s sufficient to consider only the significant wave height of a sea
tate, but we acknowledge that an appropriate treatment of the
hort-term variability is needed in practice to specify, for example,
he extreme crest for design �e.g., �3��.

In a previous study �4�, application of generalized Pareto mod-
ling to estimation of North Sea storm severity was reported for
torms with return periods of 100–500 years based on NESS hind-
ast data. The study consisted of the following elements. The tail
istribution of storm severity was modeled, and magnitudes of
xtreme events with long return periods were estimated. Uncer-
ainty of estimates was quantified using a bootstrapping approach.
inally, bias and coverage for estimates of uncertainty were quan-

Contributed by the Ocean Offshore and Article Engineering Division of ASME
or publication in the JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING.

anuscript received September 1, 2006; final manuscript received January 30, 2007.
eview conducted by Eddie H. H. Shih. Paper presented at the 25th International
onference on Offshore Mechanics and Arctic Engineering �OMAE2006�, June 4–9,

006, Hamburg, Germany.

00 / Vol. 129, NOVEMBER 2007 Copyright ©

aded 18 Jan 2013 to 72.37.250.178. Redistribution subject to ASME
tified by simulation study. The present investigation follows simi-
lar lines but focuses on extreme value modeling using data from a
neighborhood of locations.

Practical applications of multivariate extreme value modelling
are usually limited to two or three dimensions �e.g., �5–7�, and
references therein�. Coles and Simiu �8� explore the use of boot-
strapping to obtain reasonable measures of uncertainty when using
hindcast data for extreme value analysis. Bootstrapping is a stan-
dard approach in statistics and involves estimating parameter un-
certainty by resampling the original data sample at random �e.g.,
�9–13��. Coles and Simiu �8� discuss a number of difficulties in
applying bootstrapping for estimation of uncertainties in extreme
value analysis, including the tendency to underestimate extreme
quantiles. Nevertheless, they conclude that bootstrapping, care-
fully applied, can be used reliably to give realistic estimates for
parameter uncertainties. Heffernan and Tawn �12� report a condi-
tional approach for extreme value analysis applicable to higher-
dimensional problems, also incorporating bootstrapping, in which
dependence structure is characterised using rank correlation.

The paper is arranged as follows. In Sec. 2, we introduce the
GOMOS hindcast data motivating the investigation, illustrating
some key features. In Sec. 3, an outline of the generalized Pareto
model used to characterise the extreme value behavior of the data
is given. We also apply the model to the hindcast data and moti-
vate the analysis in Secs. 4 and 5. In Sec. 4, a simulation study is
performed to explore the effects of site averaging on extreme
value estimation. In Sec. 5, we introduce a simple method based
on bootstrapping to estimate uncertainty in extreme value esti-
mates �such as the magnitude of the most probable 100-year
event� and evaluate the performance of the method. In Sec. 6, we
discuss characteristics of the distribution of 100-year significant
wave height and the need for careful interpretation of most prob-
able extreme values, especially when the extreme value index is
thought to be small and negative. In Sec. 7, we summarise find-
ings and make suggestions and recommendations for future stud-
ies.

2 The Data
The data examined are significant wave height �HS� values from

the proprietary GOMOS Gulf of Mexico hindcast study �13�, for
the period from September 1900 to September 2005 inclusive, at
30 min intervals. For a typical Gulf of Mexico location, we se-

lected 72 grid points arranged on a 6�12 rectangular lattice with
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pacing with 0.125 deg ��14 km�. For each storm period for each
rid point, we isolated storm peak significant wave height HS

sp for
odeling purposes.
Figures 1–3 illustrate the key features of the current data,

amely that they correspond to a sample of extreme values from
2 locations that are spatially dependent with extreme values of
imilar magnitudes. A histogram of storm peak data �HS

sp� in ex-
ess of 2.5 m is given in Fig. 1. Figure 2�a� illustrates the high
ntercorrelation in HS

sp between one pair of diagonally opposite

ig. 1 Histogram of storm peak data, for all values for HS
sp in

xcess of 2.5 m. Constant histogram bin width.

ig. 2 „a… Scatter plot of HS
sp for diagonally opposite grid cor-

ers. The two sets of data are highly correlated. „b… Spearman
ank correlation map showing rank correlation coefficients for
ll pairs of locations, using data with HS

sp in excess of 2.5 m.
ocations are numbered numerically from 1 to 72, such that
uccessive groups of 12 locations correspond to different lon-
itudes at a given latitude. Top left shows positive rank corre-

ations. Bottom right „empty… shows negative rank correlations.
ray scale indicates value of rank correlation. Mean rank cor-

elation between locations is 0.886, with minimum of 0.535 and

aximum of 0.997.

ournal of Offshore Mechanics and Arctic Engineering
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corner points of our lattice. Figure 2�b� shows the Spearman rank
correlation matrix for HS

sp values above 2.5 m. Figure 3 gives the
maximum value of HS

sp observed at each location for the full pe-
riod of the hindcast. We note that the spatial dependence evident
in Figs. 2 and 3 is a function of the wave environment in the
region under consideration. The extent of spatial dependence will,
of course, depend on location in general, although we believe the
current location to be typical for the Gulf of Mexico.

3 The Model

Generalized Pareto Modeling. We follow the approach out-
lined in Elsinghorst et al. �4� for extreme value modeling using the
generalized Pareto distribution �GPD� for extremes above a pre-
specified threshold. Motivation for this choice of distribution is
given by Reiss and Thomas �5�. The cumulative density function
for the GPD is given by

F�x;�,�� = 1 − �1 +
�

�
�x − u��−�1/��

x � u, � � 0

where � is the extreme value index �also known as the shape
parameter�, � is the scale, and u is a prespecified threshold. We
use maximum likelihood estimation to estimate the values of pa-
rameters ��̂ , �̂� appropriate for a given sample of data. Care must
be taken to ensure that values of ��̂ , �̂� are not materially affected
by choice of u. Asymptotic variances for ��̂ , �̂� can be derived
analytically.

They are

�a�
2 =

�1 + �̂�2

n

�a
2

�̂ =
2�̂2�1 + �̂�

n

Extreme quantiles can also be estimated as follows. The most
probable 100-year significant wave height, HS100yrMP, is estimated
in terms of the 100-year return level, using

HS100yrMP =
�̂

�̂
�p−�̂ − 1� + u

Here, p is the given by p= P /100n, where P is the period of the
data in years and n is the number of data used to achieve the fit.
p−1 corresponds to the expected number of occurrences above the
GPD threshold in 100 years. An expression for the asymptotic

Fig. 3 Maximum value of HS
sp per location. Gray scale indi-

cates value.
variance of HS100yrMP is also available

NOVEMBER 2007, Vol. 129 / 301
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H100yrMP

2

=

K2�1 + �̂�2 + 2K�̂�1 + �̂

�̂
	�p−�̂ − 1� + 2�̂2�1 + �̂

�̂2 	�p−�̂ − 1�2

n

here K= ��̂ / �̂2��p−�̂−1�+ ��̂ / �̂�p−�̂ logep. � and � are reserved
hroughout the paper to refer to extreme value tail index and scale,
espectively.

Estimation for Individual and Combined Locations. Using
he GPD model, we have estimated the extreme value parameters
nd HS100yrMP for grid locations, individually. Results are given in
able 1, in terms of the mean value for extreme value index and
cale over the 72 locations. Table 1 also gives the mean value
over the 72 locations� of the asymptotic standard error for each of
xtreme value index and scale. When limited by the number of
easurements of HS

sp available at any one location, it is attractive
o combine data from neighboring locations to achieve a bigger
ample for extreme value estimation; this is the basis of the site-
veraging approach. Our motivation for doing this is that neigh-
oring locations are assumed to have common �or very similar�
xtreme value behavior. Combining locations gives us more data,
ith the same underlying extreme value distribution, to model.
e would expect to obtain better estimates of extreme value pa-

ameters ��̂ , �̂� and extreme quantiles. Table 1 gives values for
xtreme value index, scale and HS100yrMP estimated using com-
ined data for all locations. 12,226 data were used to provide the
ingle estimate based on all locations. Per location, an average of
70 data were used for the location-specific estimation.

Agreement between estimates for �� ,�� and HS100yrMP is good.
owever, there is a clear discrepancy in values for standard errors.
stimation based on a single location uses data from that location
nly; thus, standard errors are larger. But the estimate above,
ased on all data, has assumed that different locations represent
ndependent samples from the common extreme value distribu-
ion. However, neighboring locations are interdependent. Given
his dependence structure, it is likely that we are underestimating
he uncertainty associated with the extreme value estimates ��̂ , �̂�
nd ĤS100yrMP. Suppose we have data for n values of HS

sp at each
f p locations in a neighborhood. Furthermore, if data for all
ocations are identical, corresponding to perfect dependence �so
hat all locations return the same HS

sp for any given storm�, com-
ining locations cannot improve estimation. The number of inde-
endent data for modeling is still n. Conversely, suppose that HS

sp

or each pair of locations is independent; combining locations will
mprove estimation. The number of independent data for modeling
s n� p. In intermediate situations, with some level of dependence
etween locations, it is difficult to quantify the extent to which
ombining data from different locations alters the uncertainty in

xtreme value parameters ��̂ , �̂� and extreme quantiles ĤS100yrMP.
urthermore, we know that uncertainty estimates in Table 1 are
ased on asymptotic results and are unlikely to be reliable in
ractice, especially for small samples.

The discussion above motivates the current investigation. Using
simulation study, we explore the possible magnitudes of effects

able 1 Extreme value estimates and uncertainties. Note: q
sed as shorthand for HS100yrMP.

ethod q̂�m� �aq̂�m� �̂ �a�̂ �̂ �a�̂

ean of individual
stimates per grid location 13.16 1.42 –0.024 0.08 2.22 0.24

ingle estimate based on
ll grid locations 13.19 0.17 –0.022 0.01 2.22 0.03
ue to site averaging on the estimation of extreme value param-

02 / Vol. 129, NOVEMBER 2007
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eters and quantiles. We further investigate a procedure to estimate
the uncertainties of extreme value parameters and quantiles di-
rectly, given any set of n measurements for HS

sp at each of p
locations in a neighborhood, for arbitrary dependence structure.

4 Effect of Sample Size and Site Averaging on Ex-
treme Value Estimates

We consider a simple model to construct dependent storm peak
data to examine the effects of sample size and site averaging on
extreme value estimates. The essence of the model is to construct
data based on random samples from the generalized Pareto distri-
bution, perturbed by Gaussian noise. We select the parameters of
the GPD to mimic the GoM �Gulf of Mexico� data above and
adjust the strength of dependence by changing the standard devia-
tion of the Gaussian noise perturbation. The scheme is explained
as follows:

1. We draw a random sample 
Zi�i=1
n from GPD with �� ,��

= �−0.02,2.4� corresponding to n storm peaks at each of p
locations.

2. We add Gaussian random noise with standard deviation � to
represent data for p locations: xij =zij +�ij�, i=1,2 , . . . ,n, j
=1,2 , . . . , p, where � are independent drawings from the
standard Gaussian distribution.

3. By construction, each pair of locations has common depen-
dence structure; each pair of locations will be dependent to
the same extent. The magnitude of the rank correlation is a
function of �� ,�� and �.

4. By construction, the marginal distributions at all locations
are identical, but the overall extreme value characteristics
will be modified by the additive noise term.

5. Values exceeding the threshold u=2.5 m are used for ex-
treme value modeling.

One-thousand realizations of this sample are created for differ-
ent combinations of sample size n ranging from 10 to 105, number
of locations from 1 to 200, and perturbation standard deviations
from 0 to 5. Results are presented in terms of variation of ��̂ , �̂�
and ĤS100yrMP, for combinations of different numbers of locations,
with respect to sample size at each location.

Figures 4–6 present results for the variation of ��̂ , �̂� and
ĤS100yrMP in the case �=1. The mean Spearman rank correlation
coefficient is 0.73 for these data. We note that all estimates are
biased for small sample sizes per location. As sample size per
location increases, relative bias reduces. We also note that curves
for different numbers of locations combined are distinguishable
for ��̂ , �̂�; this trend is not evident for ĤS100yrMP. We conclude that

ˆ ˆ

Fig. 4 Variation of estimated extreme value index, for combi-
nations of locations of different sizes, as a function of sample
size per location. Gaussian perturbation standard deviation, �
=1.
combining data from different locations reduces the bias of �� ,��

Transactions of the ASME
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ut not that of ĤS100yrMP. Corresponding curves for case �=0
perfect dependence, not shown� exhibit the same trends with
ample size, but no effect due to number of locations combined as
ould be expected. In passing, we note that these results are con-

istent with those for the GOMOS hindcast sample in Table 1, for
hich relatively large samples are available per location, and lo-

ations are highly dependent. Note that a minimum sample size of
00 for GPD modeling was imposed in these simulation studies.
herefore, cases corresponding to smaller sample sizes were not
valuated and thus not shown in Figs. 4–6.

As we increase Gaussian noise standard deviation to �=2 and
=5, corresponding to weaker dependence between locations, the

ffect of combining locations becomes clearer, even for ĤS100yrMP.
igure 7 illustrates this for �=5, although it should be noted that
xtreme value estimates change considerably since the Gaussian
erturbation is dominating. We have confirmed that a Weibull fit
o this GOMOS data set behaves in a similar way, and we expect
ther distributions used to model extremes to behave similarly.
he mean Spearman rank correlation coefficient for the cases �
2 and �=5 is 0.47 and 0.15, respectively.

Bootstrap Approach to Quantifying Uncertainty in
xtreme Value Estimates
In this section, we present a method to estimate uncertainties of

xtreme value parameters ��̂ , �̂� and quantiles ĤS100yrMP directly,
iven any set of n measurements for HS

sp at each of p��1� loca-
ions in a neighborhood, for arbitrary dependence structure. The

ig. 5 Variation of estimated extreme value scale, for combi-
ations of locations of different sizes, as a function of sample
ize per location. Gaussian perturbation standard deviation, �
1.

ig. 6 Variation of ĤS100yrMP, for combinations of locations of
ifferent sizes, as a function of sample size per location.

aussian perturbation standard deviation, �=1.

ournal of Offshore Mechanics and Arctic Engineering
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approach uses bootstrapping, a well-established technique for es-
timation of parameter uncertainty �e.g., �10�� based on data resa-
mpling.

Suppose we have a set of observations 
xij�i=1
n

j=1
p for HS

sp mea-
sured at p locations corresponding to n storms. We assume that
each location has the same generalized Pareto marginal distribu-
tion with parameters �� ,��, GPD�� ,��. The spatial dependence
between locations is unknown but potentially considerable. Given
the original data sample D= 
xij�i=1

n
j=1
p , we proceed as follows.

1. Estimate ��̂ , �̂� and ĤS100yrMP using the whole of the original
data sample D.

2. Create a sample D�b�= 
xij
�b��i=1

n
j=1
p from D by resampling

from the n storms in D �using a common stormwise resam-
pling for all locations�, at random, with replacement.

3. Obtain estimates ��̂̂�b� , �̂̂�b�� and Ĥ
ˆ

S100yrMP
�b� for the parameters

and extreme quantile of the common marginal GPD distri-
bution fitted to all of the data in D�b�.

4. Estimate the values of d�
�b�= ��̂ˆ �b�− �̂� /�a�̂

ˆ
�b� for �

� 
� ,� ,HS100yrMP�, where �a
2

�̂ is the asymptotic variance of

parameter estimate �̂, introduced above.
5. Repeat steps 2 to 4 a large number of times B �certainly

	200, usually of the order of 1000�.
6. Estimate the critical values �c�

− ,c�
+�, such that 2.5% of the

values of 
d�
�b��b=1

B are smaller than c�
− and 2.5% are larger

than c�
+.

7. A 95% confidence interval for parameter �

� 
� ,� ,HS100yrMP� is then given by ��̂−c�
+�a�̂ , �̂−c�

−�a�̂�

The rationale for the specific nonparametric studentized resam-
pling approach adopted here is as follows. In step 1, we estimate
the common marginal distribution of extremes using the GPD. In
step 2, based on the assumption that the original sample D pro-
vides a valid estimate for the distribution from which D is drawn,
we assume that D�b� will also provide a valid estimate. Note that
resampling in step 2 retains the dependence structure of D; data
for all locations for any given storm are treated as a single multi-
variate observation for resampling. In steps 3 and 4, we estimate

the difference between estimate �̂
ˆ

and �̂ on a standardized �stu-
dentized� scale. Studentizing improves performance of bootstrap
estimation �e.g., �10��. By repeating steps 2–4 a large number
of times, we estimate critical values �c�

− ,c�
+� for

�� 
� ,� ,HS100yrMP� that characterize parameter uncertainty of

�̂
ˆ �with respect to known �̂� and, therefore, the parameter uncer-

ˆ

Fig. 7 Variation of ĤS100yrMP, for combinations of locations of
different sizes, as a function of sample size per location.
Gaussian perturbation standard deviation, �=5.
tainty of � �with respect to the true unknown ��. Note, in particu-
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ar, the signs and placement of c�
− and c�

+ in the expression for the

onfidence interval for � at step 7, since �a�̂

−1��̂−��� �c
�̄

−
,c�

+�� is

quivalent to �� ��̂−c�
+�a�̂ , �̂−c�

−�a�̂�.
We apply the method to a subset of the GoM hindcast data for

hich all 72 locations provide storm peak HS
sp values in excess of

.5 m, so that we can assume that data for each location are rea-
onably modeled by a common extreme value distribution. A total
f 148 storms were used. Results of extreme value modeling using
=500 bootstrap realizations are given in Table 2. We observe, in
articular, that the 95% interval for each parameter is asymmetric.
or ĤS100yrMP in particular, asymmetry is consistent with theory
nd previous findings for single locations �4�.

It is interesting to compare estimates in Table 2 to those in
able 1. Recalling that for Table 1, asymptotic 95% confidence
ands can be constructed using ��̂−1.96�a�̂

, �̂+1.96�a�̂
�, we see

hat confidence intervals for �̂ and �̂ in Table 2 are narrower than
hose based on an individual location, but considerably wider than
hose based on combining data for all locations without regard for
ependence structure. That is, site averaging reduces uncertainty

f ��̂ , �̂� to some extent. Conversely, for ĤS100yrMP, the confidence
and in Table 2 is almost as wide as that estimated using a single
ocation. These inferences concur with those from the simulations
n Sec. 4 for case �=1.

The performance of the bootstrapping method was quantified in
erms of the coverage for interval estimates ��̂−c�

+�a�̂ , �̂−c�
−�a�̂�

or �� 
� ,� ,HS100yrMP�, when the true data model is known. We
erformed the following simulation study. Data samples of size
50 storms for 72 locations were generated from GDP�−0.1,2.7�
or three different situations. In the first case �no dependence�,
ndependent data samples were generated for each location. In the
econd case, �perfect dependence�, identical data were used for
ach location for any given storm. In the third case, �GOMOS
esample�, a resample �stormwise across all locations� of the ac-
ual GOMOS data was used. The no-dependence and perfect-
ependence cases correspond to limiting dependence structures
hat we would expect to encounter.

For each of 500 realizations of the data, B
500 bootstrap
amples were used to estimate extreme value parameter uncer-
ainty. Results are given in Table 3, in terms of the number of
xceedances of the bootstrap interval on the left- and right-hand
ides.

We expect total exceedance to be 5%, since we are using a 95%
nterval, with an average 12.5 of the 500 realizations to provide
xceedances on each of the left- and right-hand sides. Values for
umber of exceedances in Table 3 confirm that the bootstrap con-
dence interval estimate is performing adequately in all three
ases; numbers of exceedances are generally consistent with ex-
ectation. We also note that intervals �−c�

+ ,−c�
−� for �̂, in particu-

ar, correspond reasonably with intuition. For the no-dependence
ase, �−c�

+ ,−c�
−� is approximately equal to the asymptotic value

−1.96,1.96�. For the perfect-dependence case, the interval esti-
ate is approximately �728.5 times as wide as the no-

ependence case. The GOMOS resample case is intermediate, as
ould be expected. We note that interval estimates are skewed,

kewness being considerable for � and especially ĤS100yrMP.

able 2 Extreme value estimates and uncertainties estimated
sing HS

sp values above 2.5 m at all 72 grid locations. Note: q
sed as shorthand for HS100yrMP.

arameter q̂ �m� �̂ �̂

stimate 13.0 −0.098 2.68
ootstrap 95% interval �11.5,16.3� �−0.164,0.015� �2.28,3.07�
We note at this point that a brief study of the Heffernan and

04 / Vol. 129, NOVEMBER 2007
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Tawn �12� approach was undertaken, but found not to provide that
same quality of coverage performance especially for the no-
dependence and perfect-dependence cases. This is perhaps not
surprising since rank correlation is an inadequate characterisation
of the dependency structure in these cases.

6 Discussion
The value of extreme value index for the current data is small

and negative. This requires careful interpretation of estimates of
HS100yrMP used for structural design purposes. For values of � of
approximately −0.3 �typical for northern North Sea environ-
ments�, the distribution of the 100-year significant wave height
HS100yr is relatively symmetric about HS100yrMP. However, as the
value of � increases to zero from below, the distribution of HS100yr
becomes increasingly skewed to the right. HS100yrMP remains its
most probable value, but there is increasing probability of consid-
erably larger values than HS100yrMP. In particular, from a structural
design perspective, broad-brush application of a design safety fac-
tor may be inappropriate. Indeed, it might be more appropriate to
estimate the value of some high percentile �say 95%� of the
HS100yr distribution, rather than its most probable value. Specifi-
cally, HS100yr0.95 is the value of HS100yr exceeded once in every 20
independent locations studied. From above, we have HS100yrMP
= �̂ � �̂ �p−�̂−1�+u where p= 1 � n100 and n100 is the expected
number of storms in a 100-year period.

A similar expression can be derived for the value of HS100yr�1−q�,
the value of the 100-year significant wave height exceeded with
probability q in any 100-year period, assuming that the number of
storms in 100 years is Poisson distributed,

HS100yr�1−q� =
�̂

�̂
��loge� �1 − q�−1

n100
��−�̂

− 1	 + u

For HS100yr0.95, q=0.05. Figure 8 shows the behavior of
HS100yrMP and HS100yr as a function of �̂ for the standard case �̂
=1, u=0. Values for other �̂ and u can be read from Fig. 8 by
multiplying the value of the ordinate from the figure by �̂ then
adding u. HS100yr0.95 grows more quickly than HS100yrMP as �̂ ap-
proaches 0 from below. Thus, for the current GOMOS data, the
most probable value for HS100yr is �13 m, whereas the value of
HS100yr0.95 is above 17 m. It is illustrative to consider the implica-
tions of Fig. 8 for northern North Sea conditions compared to Gulf
of Mexico. For the northern North Sea, the distribution of HS100yr
is approximately symmetric �index is approximately −0.3�. How-

Table 3 Performance of interval estimates „�̂−c�
+�a�̂ , �̂−c�

−�a�̂…

for �« ˆ� ,� ,HS100yrMP‰ for different known dependence struc-
tures. Note: q used as shorthand for HS100yrMP.

Critical values of 95% interval estimates

�= q̂ �= �̂ �= �̂

Data −c�
+ −c�

− −c�
+ −c�

− −c�
+ −c�

−

No dependence −1.8 2.1 −1.8 2.1 −1.9 1.9
Perfect dependence −10.6 39.9 −13.8 28.5 −17.9 18.7
GOMOS resample −10.3 25.2 −8.2 14.0 −11.0 11.6
Coverage for 95% interval estimates �numbers of left- and right-hand
exceedences�

�= q̂ �= �̂ �= �̂

Data LH RH LH RH LH RH

No dependence 14/500 14/500 17/500 13/500 18/500 17/500
Perfect dependence 27/500 21/500 8/500 9/500 16/500 7/500
GOMOS resample 21/500 9/500 24/500 12/500 6/500 28/500
ever, for the Gulf, the distribution is asymmetric �index is �0�.
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Downlo
hus, even for the same value of HS100yrMP in both environments,
e expect a greater proportion of larger values of HS100yr in the
ulf than in the northern North Sea.
For comparison, Fig. 8 also shows values of the median

S100yr0.50 and fifth percentile HS100yr0.05. The inset in Fig. 8 ex-
ends the illustration to small positive extreme value index. The
urrent findings clearly demonstrate the need to accommodate
ave height uncertainty explicitly �for example in the form of the
istribution for HS100yr rather than its most probable value
S100yrMP� for reliable structural design.
It might be noted that the current analysis assumes the distribu-

ion of extremes of storm peak HS to be homogeneous in space,
ime, and direction. The current data does not contradict the as-
umption of homogeneity in space for the spatial scale under con-
ideration. However, there is clear evidence in the data suggesting
emporal variability �e.g., from comparison of data for the periods
efore and after 1950� and directional variability for hurricanes in
he Gulf of Mexico. The intention of the current investigation is to
evelop a pragmatic but reliable approach to the estimation of the
ncertainty of extreme storm conditions for the simple model pre-
ented. In a future analysis, it would be worthwhile to extend the
odel formulation in Sec. 3 to include both directional and tem-

oral variation of the extreme value distribution; an extension
ncorporating directional variability has recently been presented
y Ewans and Jonathan �14�. Over wider spatial domains, spatial
ariability would also need to be accommodated in a full spa-
iotemporal directional extreme value model.

Conclusions
The main conclusions of the investigation are as follows:

1. Modeling using the generalized Pareto distribution for data
typical of the current hindcast example produces biased es-
timates for extreme value index, scale, and quantiles from
small samples. Simulation studies for single and multiple
locations show that, for data typical of the GOMOS hindcast
examined here, using �100 independent points for modeling
leads to underestimation of events, such as HS100yrMP. Mag-
nitudes of extreme value index � and scale � are overesti-
mated, but these effects partly compensate for HS100yrMP
quantile estimates. Similar effects are observed for Weibull
fitting of the same data.

2. Combining dependent data from different locations reduces
bias of estimates. Given that all locations can be modeled
using a common extreme value distribution, estimates for �,

ig. 8 HS100yrMP, HS100yr0.95, HS100yr0.50, and HS100yr0.05 as a func-
ion of extreme value index �̂ for the standard case �̂=1, u=0.
he distribution becomes skewed to the right as �̂ approaches
ero from below.
ournal of Offshore Mechanics and Arctic Engineering

aded 18 Jan 2013 to 72.37.250.178. Redistribution subject to ASME
�, and HS100yrMP become less biased as effective sample size
increases, regardless of whether that sample is drawn from
multiple dependent locations. Nevertheless, site averaging
can have �at worst� no effect and can also be of little benefit
when strong location dependence exists. Site averaging also
provides less benefit for estimates of extreme quantiles than
for index and scale.

3. Reliable estimates for parameter uncertainties for data from
multiple dependent locations are not trivial to obtain.
Asymptotic forms for standard errors of maximum likeli-
hood estimators for �, �, and HS100yrMP are available but
cannot be used reliably to quantify uncertainty. We present a
nonparameteric studentized bootstrapping approach and
demonstrate its performance in providing �95% confidence
intervals using GOMOS hindcast and simulated data corre-
sponding to a range of dependence structures.

4. Estimates of HS100yrMP used for structural design purposes
require careful interpretation, especially when the extreme
value index is small and negative. As � increases to zero
�and beyond� from below, the distribution of HS100yr be-
comes increasingly skewed to the right and there is increas-
ing probability of considerably larger values of HS100yr for
given HS100yrMP.
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