Non-stationary extremes with splines

Philip Jonathan

philip.jonathan@shell.com www.lancs.ac.uk/~jonathan

> Shell Projects & Technology Lancaster University

> > Hejnice 2013

Thanks for contributions by Shell colleagues:

• Kevin Ewans, Graham Feld, David Randell, Yanyun Wu

... and Lancaster students:

• Kaylea Haynes, Emma Ross, Elena Zanini

Outline

Background

- Motivation
- Australian North West Shelf
- 2 Extreme value analysis: challenges
 - Univariate challenges
 - Multivariate challenges

3 Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

Contents

Background

- Motivation
- Australian North West Shelf
- 2 Extreme value analysis: challenges
 - Univariate challenges
 - Multivariate challenges

3 Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

- Rational design an assessment of marine structures:
 - Reducing bias and uncertainty in estimation of structural reliability
 - Improved understanding and communication of risk
 - For new (e.g. floating) and existing (e.g. steel and concrete) structures
 - Climate change
- Other applied fields for extremes in industry:
 - Corrosion and fouling
 - Economics and finance

Australian North West Shelf

Philip Jonathan (Shell, Lancaster)

- Model storm peak significant wave height H_S
- Wave climate is dominated by westerly **monsoonal swell** and **tropical cyclones**
- Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea
- Sample of hindcast storms for period 1970-2007
- 9×9 rectangular spatial grid over $5^o \times 5^o$ longitude-latitude domain
- Spatial and directional variability in extremes present
- Marginal spatio-directional model

Cyclone Narelle January 2013: spatio-directional

Cyclone Narelle January 2013: cyclone track

Storm peak H_S by direction

Raw data: 6156 events

Philip Jonathan (Shell, Lancaster)

Quantiles of storm peak H_S spatially

Contents

Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

- Univariate challenges
- Multivariate challenges

Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

Extreme value analysis: univariate challenges

• Covariates and non-stationarity:

- Location, direction, season, time, water depth, ...
- Multiple / multidimensional covariates in practice
- Cluster dependence:
 - Same events observed at many locations (pooling)
 - Dependence in time (Chavez-Demoulin and Davison 2012)
- Scale effects:
 - Modelling X or f(X)? (Reeve et al. 2012)
- Threshold estimation:
 - Scarrott and MacDonald [2012]
- Parameter estimation
 - Maximum likelihood, moments, Hill, ...
- Measurement issues:
 - Field measurement uncertainty greatest for extreme values
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation

Extreme value analysis: multivariate challenges

• Spatial extremes using componentwise maxima:

- $\bullet \ \Leftrightarrow \mathsf{max}\mathsf{-stability} \Leftrightarrow \mathsf{multivariate} \ \mathsf{regular} \ \mathsf{variation}$
- Assumes all components extreme
- $\bullet \ \Rightarrow$ Perfect independence or asymptotic dependence only
- Composite likelihood for spatial extremes (Davison et al. 2012)
- Extremal dependence: (Ledford and Tawn 1997)
 - Assumes regular variation of joint survivor function
 - Gives more general forms of extremal dependence
 - \Rightarrow Asymptotic dependence, asymptotic independence (with +ve, -ve association)
 - Hybrid spatial dependence model (Wadsworth and Tawn 2012)
- Conditional extremes: (Heffernan and Tawn 2004)
 - Assumes, given one variable being extreme, convergence of distribution of remaining variables
 - Allows some variables not to be extreme
 - Not equivalent to extremal dependence
- Application:
 - ... a huge gap in the theory and practice of multivariate extremes ... (Beirlant et al. 2004)

Contents

Background

- Motivation
- Australian North West Shelf
- 2 Extreme value analysis: challenges
 - Univariate challenges
 - Multivariate challenges

3 Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

- Sample {z_i}ⁱ_{i=1} of n storm peak significant wave heights observed at locations {x_i, y_i}ⁱ_{i=1} with storm peak directions {θ_i}ⁱ_{i=1}
- Model components:
 - **()** Threshold function ϕ above which observations \dot{z} are assumed to be extreme estimated using quantile regression
 - **Q** Rate of occurrence of threshold exceedances modelled using Poisson model with rate ρ(^Δ/₂ ρ(θ, x, y))
 - Size of occurrence of threshold exceedance using generalised Pareto (GP) model with shape and scale parameters ξ and σ

- Rate of occurrence and size of threshold exceedance functionally **independent** (Chavez-Demoulin and Davison 2005)
 - Equivalent to non-homogeneous Poisson point process model (Dixon et al. 1998)
- Smooth functions of covariates estimated using penalised B-splines (Eilers and Marx 2010)
 - Slick linear algebra (c.f. generalised linear array models, Currie et al. 2006)

Penalised B-splines

- Physical considerations suggest model parameters ϕ, ρ, ξ and σ vary smoothly with covariates θ, x, y
- Values of $(\eta =)\phi, \rho, \xi$ and σ all take the form:

$$\eta = B\beta_{\eta}$$

for **B-spline** basis matrix *B* (defined on index set of covariate values) and some β_{η} to be estimated

• Multidimensional basis matrix *B* formulated using Kronecker products of marginal basis matrices:

$$B = B_{\theta} \otimes B_x \otimes B_y$$

• Roughness R_{η} defined as:

$$R_{\eta} = \beta_{\eta}' P \beta_{\eta}$$

where effect of P is to difference neighbouring values of β_{η}

- Wrapped bases for periodic covariates (seasonal, direction)
- Multidimensional bases easily constructed. Problem size sometimes prohibitive
- Parameter smoothness controlled by roughness coefficient λ: cross validation chooses λ optimally

Quantile regression model for extreme value threshold

Estimate smooth quantile φ(θ, x, y; τ) for non-exceedance probability τ of z (storm peak H_S) using quantile regression by minimising penalised criterion ℓ^{*}_φ with respect to basis parameters:

$$egin{array}{rcl} \ell_{\phi}^{*} &=& \ell_{\phi} + \lambda_{\phi} R_{\phi} \ \ell_{\phi} &=& \{ au \sum_{r_{i} \geq 0}^{n} |r_{i}| + (1 - au) \sum_{r_{i} < 0}^{n} |r_{i}| \} \end{array}$$

for $r_i = z_i - \phi(\theta_i, x_i, y_i; \tau)$ for i = 1, 2, ..., n, and **roughness** R_{ϕ} controlled by roughness coefficient λ_{ϕ}

• (Non-crossing) quantile regression formulated as linear programme (Bollaerts et al. 2006)

Spatio-directional 50% quantile threshold

Cross-validation for optimal roughness

Philip Jonathan (Shell, Lancaster)

Poisson model for rate of threshold exceedance

• Poisson model for rate of occurrence of threshold exceedance estimated by minimising roughness penalised log likelihood:

$$\ell_{
ho}^* = \ell_{
ho} + \lambda_{
ho} R_{
ho}$$

• (Negative) penalised Poisson log-likelihood (and approximation):

$$\begin{split} \ell_{\rho} &= -\sum_{i=1}^{n} \log \rho(\theta_{i}, x_{i}, y_{i}) + \int \rho(\theta, x, y) d\theta dx dy \\ \hat{\ell}_{\rho} &= -\sum_{j=1}^{m} c_{j} \log \rho(j\Delta) + \Delta \sum_{j=1}^{m} \rho(j\Delta) \end{split}$$

- {c_j}^m_{j=1} counts of threshold exceedances on index set of m (>> 1) bins partitioning covariate domain into intervals of volume Δ
- $\lambda_{
 ho}$ estimated using cross validation

Spatio-directional rate of threshold exceedances

Generalised Pareto model for size of threshold exceedance

 Generalise Pareto model for size of threshold exceedance estimated by minimising roughness penalised log-likelihood:

$$\ell_{\xi,\sigma}^* = \ell_{\xi,\sigma} + \lambda_{\xi} R_{\xi} + \lambda_{\sigma} R_{\sigma}$$

• (Negative) conditional generalised Pareto log-likelihood:

$$\ell_{\xi,\sigma} = \sum_{i=1}^n \log \sigma_i + \frac{1}{\xi_i} \log(1 + \frac{\xi_i}{\sigma_i}(z_i - \phi_i))$$

- Parameters: shape ξ , scale σ
- Threshold ϕ set prior to estimation
- λ_{ξ} and λ_{σ} estimated using cross validation. In practice set $\lambda_{\xi} = \kappa \lambda_{\sigma}$ for fixed κ

 Return value z_T of storm peak significant wave height corresponding to return period T (years) evaluated from estimates for φ, ρ, ξ and σ:

$$z_{\mathcal{T}}=\phi-rac{\sigma}{\xi}(1+rac{1}{
ho}(\log(1-rac{1}{\mathcal{T}}))^{-\xi})$$

- z_{100} corresponds to 100-year return value, denoted H_{S100}
- Alternative: estimation of return values by simulation under model

Spatio-directional 100-year return value H_{S100}

Contents

Background

- Motivation
- Australian North West Shelf
- 2 Extreme value analysis: challenges
 - Univariate challenges
 - Multivariate challenges

3 Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

- Non-stationarity
 - Spatio-directional, seasonal-directional and spatio-seasonal-directional
- Computational efficiency
 - Sparse and **slick** matrix manipulations
- Quantifying uncertainty
 - Bootstrapping, Bayesian (Nasri et al. 2013, Oumow et al. 2012)
- Spatial dependence
 - Composite likelihood: model componentwise maxima
 - $\bullet\,$ Censored likelihood: block maxima \rightarrow threshold exceedances
 - Hybrid model: full range of extremal dependence
- Interpretation within structural design framework
- Non-stationary conditional extremes
 - Spline representations for parameters of marginal and conditional extremes models (Jonathan et al. 2013)

Types of extremal dependence

Extremal dependence

- Bivariate random variable (X, Y)
- $\chi = \lim_{x \to \infty} \Pr(X > x | Y > x)$
- asymptotically independent if $\chi = 0$
- asymptotically dependent if $\chi > 0$
- Extremal dependence models:
 - Admit asymptotic independence.
- But have issues with:
 - Thresholds
 - Covariates
 - High dimensions
- Ideas from theory of regular variation (see Bingham et al. 1987)

Limit assumption 1 on joint tail

- (X_F, Y_F) with Frechet marginals $(Pr(X_F < f) = e^{-\frac{1}{f}})$.
- Assume $Pr(X_F > f, Y_F > f)$ is regularly varying at infinity: $\lim_{f \to \infty} \frac{Pr(X_F > sf, Y_F > sf)}{Pr(X_F > f, Y_F > f)} = s^{-\frac{1}{\eta}}$ for some fixed s > 0
- This suggests:

$$\begin{aligned} & Pr(X_F > sf, Y_F > sf) &\approx s^{-\frac{1}{\eta}} Pr(X_F > f, Y_F > f) \\ & Pr(X_G > g + t, Y_G > g + t) &= Pr(X_F > e^{g+t}, Y_F > e^{g+t}) \\ &\approx e^{-\frac{t}{\eta}} Pr(X_F > e^g, Y_F > e^g) \\ &= e^{-\frac{t}{\eta}} Pr(X_G > g, Y_G > g) \end{aligned}$$

on Gumbel scale X_G : $Pr(X_G < g) = \exp(-e^{-g})$.

- η is known as the **coefficient of tail dependence**.
- η and χ characterise extremal dependence between two variables.

Limit assumption 2 on joint tail

- Ledford and Tawn [1997] motivated by Bingham et al. [1987]
- Assume model Pr(X_F > f, Y_F > f) = ℓ(f)f^{-1/η}
 ℓ(f) is a slowly-varying function, lim_{f→∞} ℓ(sf)/ℓ(f) = 1

Then:

$$Pr(X_F > f | Y_F > f) = \frac{Pr(X_F > f, Y_F > f)}{Pr(Y_F > f)}$$

= $\ell(f)f^{-\frac{1}{\eta}}(1 - e^{-\frac{1}{f}})^{-1}$
 $\sim \ell(f)f^{1-\frac{1}{\eta}}$
 $\sim \ell(f)Pr(Y_F > f)^{\frac{1}{\eta}-1}$

- At $\eta < 1$ (or $\lim_{f \to \infty} \ell(f) = 0$), X_F and Y_F are **As.Ind.**!
- η easily estimated from a sample by noting that L_F , the minimum of X_F and Y_F is approximately GP-distributed:

$${\it Pr}(L_{\it F}>f+s|L_{\it F}>f)~\sim~(1+rac{{f s}}{f})^{-rac{{f a}}{\eta}}$$
 for large f

Characterising pairwise spatial dependence using $\boldsymbol{\eta}$

- Asymptotic independence if $\eta < 1$
- Asymptotic dependence $\eta=1$ valid locally only
- Non-stationary region of asymptotic dependence

Conditional extremes

Limit assumption on conditional tail

Limit assumption on conditional tail

- Model conditional (and hence joint) extremes of two variables
- Heffernan and Tawn [2004]
- Sample $\{x_{i1}, x_{i2}\}_{i=1}^n$ of variate X_1 and X_2
- (X_1, X_2) transformed to (Y_1, Y_2) on standard Gumbel scale
- Model $(Y_2|Y_1 = y) = ay + y^b Z$ for large y and positive dependence
- Model $(Y_1|Y_2 = y)$ similarly
- Appropriate for most known distributional forms, but not all
- Simulation to sample joint distribution of (Y_1, Y_2) (and (X_1, X_2))
- Encompasses **both** asymptotic dependence and asymptotic independence
- Extends naturally (pairwise) to high dimensions
- \bullet But: consistency of $(\mathit{Y}_2|\mathit{Y}_2)$ and $(\mathit{Y}_1|\mathit{Y}_2)$ not ensured
Simple stationary conditional extremes

On **Gumbel** scale, extend with common covariate θ :

$$(Y_2|Y_1 = y, \theta) = \alpha_{\theta}y + y^{\beta_{\theta}}(\mu_{\theta} + \sigma_{\theta}Z) \text{ for } y > \phi_{\theta}(\tau)$$

where:

 φ_θ(τ) is a high non-stationary quantile of Y₁ on Gumbel scale, for non-exceedance probability τ, above which the model fits well

•
$$\alpha_{ heta} \in [0,1]$$
, $\beta_{ heta} \in (-\infty,1]$, $\sigma_{ heta} \in [0,\infty)$

• Z is a random variable with **unknown** distribution G, assumed Normal for estimation

South Atlantic Ocean sample

Single directional covariate. Three directional sectors identified by consideration of fetch conditions, with differing sample characteristics

South Atlantic Ocean parameter estimates

South Atlantic Ocean return values

More at www.lancs.ac.uk/~jonathan/NSCE13.pdf

Spatial extremes

Modelling of component-wise maxima

- Beirlant et al. [2004] is a nice introduction.
- No obvious way to order multivariate observations.
- Theory based on component-wise maximum, M.
 - For sample $\{x_{ij}\}_{i=1}^n$ in p dimensions:
 - $M_j = max_{i=1}^n \{x_{ij}\}$ for each j.
 - M probably not a sample point!

•
$$P(M \le x) = \prod_{j=1}^{p} P(X_j \le x_j) = F^n(x)$$

• Assume:
$$F^n(a_nx + b_n) \xrightarrow{D} G(x)$$

• Therefore also:
$$F_j^n(a_{n,j}x_j + b_{n,j}) \xrightarrow{D} G_j(x_j)$$

Homogeneity

Limiting distribution with Frechet marginals, G_F
 G_F(z) = G(G₁[←](e^{-1/z₁}), G₂[←](e^{-1/z₂}), ..., G_p[←](e^{-1/z_p}))

- V_F(z) = -log G_F(z) is the exponent measure function
 V_F(sz) = s⁻¹V_F(z) homogeneity order -1
- $V_F(1)$ is known as the extremal coefficient (and $V(1) = 2 \chi$)

Homogeneity order -1 is equivalent to asymptotic dependence (or **perfect** independence):

$$\begin{aligned} P(X > sf, Y > sf) &= 1 - (P(X > sf) + P(Y > sf) \\ &+ P(X \le sf, Y \le sf)) \\ &= (1 - P(X \le sf, Y \le sf)) - 2P(X > sf) \\ &= (1 - \exp(-V(sf, sf))) - 2(1 - \exp(-1/(sf))) \\ &\approx V(sf, sf) = s^{-1}V(f, f) \text{ for large } f \\ &= s^{-1}P(X > f, X > f) \text{ so that } \eta = 1 \end{aligned}$$

Composite likelihood for spatial dependence

• Composite likelihood $I_C(\theta)$ assuming Frechet marginals:

$$l_{C}(\theta) = -\sum_{i=1}^{n} \sum_{j=1}^{n} \log f(z_{i}, z_{j}; \theta)$$

$$f(z_{i}, z_{j}) = \left(\frac{\partial V(z_{i}, z_{j})}{\partial z_{i}} \frac{\partial V(z_{i}, z_{j})}{\partial z_{j}} - \frac{\partial^{2} V(z_{i}, z_{j})}{\partial z_{i} \partial z_{j}}\right) e^{-V(z_{i}, z_{j})}$$

- Lots of possible exponent measures with simple bivariate parametric forms with pre-specified functions (e.g. of distance) whose parameters must be estimated:
 - Smith (Spatial Gaussian process)
 - Schlather (Extremal Gaussian process)
 - Geometric Gaussian
 - Brown-Resnick model
 - Davison and Gholamrezaee
 - Wadsworth & Tawn (Hybrid Gaussian-Gaussian process)
- See Davison et al. [2012].

$$V(z_i, z_j) = \frac{1}{z_i} \Phi(\frac{\alpha(h)}{2} + \frac{1}{\alpha(h)} \log(\frac{z_j}{z_i})) \\ + \frac{1}{z_j} \Phi(\frac{\alpha(h)}{2} + \frac{1}{\alpha(h)} \log(\frac{z_i}{z_j}))$$

with pre-specified $\alpha(h) = (h' \Sigma^{-1} h)^{1/2}$ of distance *h*, where:

$$\Sigma = \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array}\right)$$

and σ_1^2 , σ_{12} and σ_2^2 must be estimated.

Realisation from Smith process

For case $\sigma_1^2 = 20$, $\sigma_{12} = 15$ and $\sigma_2^2 = 30$. Standard Frechet marginals.

Realisations: Schlather and geometric Gaussian processes

- Non-stationary spatial processes
 - parameterise in terms of covariates
- Modelling of threshold exceedances more efficient than block maxima
 - censored likelihood
- Cannot assume asymptotic dependence
 - hybrid model admits asymptotic dependence and asymptotic independence
- Computational efficiency

Summary

Background

- Motivation
- Australian North West Shelf
- 2 Extreme value analysis: challenges
 - Univariate challenges
 - Multivariate challenges

3 Non-stationary extremes

- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

Current developments

- Extremal dependence
- Conditional extremes
- Spatial extremes

References

- J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes: theory and applications. Wiley, 2004.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation. Cambridge University Press, 1987.
- K Bollaerts, P H C Eilers, and M Aerts. Quantile regression with monotonicity restrictions using P-splines and the L1 norm. Statistical Modelling, 6:189–207, 2006.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy. Statist. Soc. Series C: Applied Statistics, 54:207, 2005.
- V. Chavez-Demoulin and A.C. Davison. Modelling time series extremes. REVSTAT Statistical Journal, 10:109-133, 2012.
- I. D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. J. Roy. Statist. Soc. B, 68:259–280, 2006.
- A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. Statistical Science, 27:161-186, 2012.
- J. M. Dixon, J. A. Tawn, and J. M. Vassie. Spatial modelling of extreme sea-levels. Environmetrics, 9:283-301, 1998.
- P H C Eilers and B D Marx. Splines, knots and penalties. Wiley Interscience Reviews: Computational Statistics, 2:637–653, 2010.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B, 66:497, 2004.
- P. Jonathan, K. C. Ewans, and D. Randell. Joint modelling of environmental parameters for extreme sea states incorporating covariate effects. *Coastal Engineering*, 79:22–31, 2013.
- A. W. Ledford and J. A. Tawn. Modelling dependence within joint tail regions. J. R. Statist. Soc. B, 59:475-499, 1997.
- B. Nasri, S. El Adlouni, and T. B. M. J. Ouarda. Bayesian estimation for GEV B-Spline model. Open Journal of Statistics, 3: 118–128, 2013.
- B. Oumow, M. de Carvalho, and A. C. Davison. Bayesian P-spline mixture modeling of extreme forest temperatures. Available at www.mat.puc.cl/~ mdecarvalho, 2012.
- D.T. Reeve, D. Randell, K.C.Ewans, and P. Jonathan. Accommodating measurement scale uncertainty in extreme value analysis of North Sea storm severity. Ocean Eng., 53:164–176, 2012.
- C. Scarrott and A. MacDonald. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT -Statistical Journal, 10:33–60, 2012.
- J.L. Wadsworth and J.A. Tawn. Dependence modelling for spatial extremes. Biometrika, 99:253-272, 2012.

Philip Jonathan (Shell, Lancaster)

Extremes with splines