

Modelling extreme environments

Philip Jonathan

Shell Technology Centre Thornton, Chester, UK

philip.jonathan@shell.com www.lancs.ac.uk/~jonathan

SUTGEF meeting, Oxford September 2011

Outline

- Motivation.
- Modelling challenges.
- Basics.
- Covariate effects in extremes.
- Multivariate extremes.
- Current developments.
- Conclusions.

Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Motivation

Katrina in the Gulf of Mexico.

Katrina damage.

Cormorant Alpha in a North Sea storm.

"L9" platform in the Southern North Sea.

A wave seen from a ship.

Black Sea coast.

- Rational design an assessment of marine structures:
 - Reducing **bias** and **uncertainty** in estimation of structural reliability.
 - Improved understanding and communication of risk.
 - Climate change.
- Other applied fields for extremes in industry:
 - Corrosion and fouling.
 - Finance.
 - Networks.

Sanity check

- All models are wrong, some models are useful.
- George Box, http://en.wikipedia.org/wiki/George_E._P._Box
- How can we make models as useful as possible?
- Consistency between physical, engineering and statistical insights.

Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Modelling challenges

- Covariate effects:
 - Location, direction, season, ...
 - Multiple covariates in practice.
- Cluster dependence:
 - e.g. storms independent, observed (many times) at many locations.
 - e.g. dependent occurrences in time.
- Scale effects:
 - Modelling x² gives different estimates c.f. modelling x.
- Threshold estimation.
- Parameter estimation.
- Measurement issues:
 - Field measurement uncertainty greatest for extreme values.
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation.

- Multivariate extremes:
 - Waves, winds, currents, forces, moments, displacements, ...
 - Componentwise maxima ⇔ max-stability ⇔ regular variation:
 - Assumes all components extreme.
 - \Rightarrow Perfect independence or asymptotic dependence **only**.
 - Extremal dependence:
 - Assumes regular variation of joint survivor function.
 - Gives rise to more general forms of extremal dependence.
 - \Rightarrow Asymptotic dependence, asymptotic independence.
 - Conditional extremes:
 - Assumes, given one variable being extreme, convergence of distribution of remaining variables.
 - Not equivalent to extremal dependence.
 - Allows some variables not to be extreme.
 - Inference:
 - ... a huge gap in the theory and practice of multivariate extremes ... (Beirlant et al. 2004)

Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Basics

Degenerate cdf of block maximum

- $F(X) = Pr(X \le x)$, cumulative distribution function (cdf)
- $M_n = \max_i \{X_i\}$, **block** maximum
- $Pr(M_n \le x) = [Pr(X \le x)]^n$, cdf of maximum
- As n ↑ ∞, Pr(M_n ≤ x) becomes degenerate (= 0 everywhere except at the maximum value of X, x^F)
- What do we do to make $Pr(M_n \le x)$ useful?

Generalised extreme value distribution

 Try shifting and scaling the random variable to make its tail more stable (this is like the central limit theorem)

•
$$Y_n = a_n^{-1}(max_i\{X_i\} - b_n)$$

- $Pr(Y_n \leq y) = [Pr(X \leq b_n + a_n y)]^n$
- As n↑∞, Pr(Y_n ≤ y) is almost always well behaved (we have max-stable distribution)

$$Pr(Y_n \leq y) \rightarrow \exp\{(1 + \xi \frac{y - \mu}{\sigma})_+^{-\frac{1}{\xi}}\} \text{ as } n \to \infty \text{ for } \xi \neq 0$$
$$(\rightarrow \exp\{\exp(-\frac{y - \mu}{\sigma})\} \text{ when } \xi = 0)$$

• Generalised extreme value distribution (GEV)

Domain of attraction

- All max-stable distributions converge to the GEV for some value of shape parameter, ξ
 - Any max-stable distribution is within the domain of attraction (DOA) of GEV for some ξ
- The Weibull distribution converges to GEV with:

•
$$\bar{F} = kx^{\alpha} exp - cx^{\tau}$$

•
$$a_n = \frac{1}{c\tau} (c^{-1} \log n)^{(1/\tau)-1}$$

- $b_n = (c^{-1} \log n)^{1/\tau}$ to leading order
- Note: this theory is analogous to central limit theorem. There is nothing mysterious here.
 - If you are happy that the mean of random variables with arbitrary distributions converges to a Gaussian ⇒ you should be equally happy with GEV for block maxima!

$\text{GEV} \Rightarrow \text{GP}$

- *Y_n* is max-stable, the maximum of *n* events (i.e. a **block** maximum), each with distribution function *F*
- So, if *n* is large enough, $F^n(y) \approx \exp(-\left(1 + \xi \frac{y-\mu}{\sigma}\right)^{-\frac{1}{\xi}})$
- $n \log F(y) \approx -\left(1 + \xi \frac{y-\mu}{\sigma}\right)^{-\frac{1}{\xi}}$ (log both sides)
- $Pr(Y_n > y) = 1 F(y) \approx \frac{1}{n} \left(1 + \xi \frac{y \mu}{\sigma}\right)^{-\frac{1}{\xi}}$ (Taylor expansion, $\log x = -(1 x)$)
- $Pr(Y_n > y | Y_n > u) = \frac{1 F(y)}{1 F(u)} \approx (1 + \xi \frac{y u}{\tilde{\sigma}})^{-\frac{1}{\xi}}$ (simple re-arrangement, where $\tilde{\sigma} = \sigma + \xi(u \mu)$)
- This is the generalised Pareto (GP) distribution.
- **Threshold exceedences** from max-stable distributions are GP distributed.
- Block maxima from max-stable distributions are GEV distributed

Poisson + GP \Rightarrow GEV

If occurrence rate of exceedences are Poisson, we can write:

$$Pr(\max \text{ in period } \leqslant z) = \sum_{k=0}^{\infty} (k \text{ storms in period})F^{k}(z)$$
$$= \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \exp(-\lambda)F^{k}(z)$$
$$= \exp(-\lambda(1 - F(z)))$$

- But threshold exceedences are GP-distributed, so: $Pr(\max \text{ in period } \leq z) = \exp(-\lambda \left(1 + \xi \frac{z - u}{\tilde{\sigma}}\right)^{-\frac{1}{\xi}})$
- λ is expected number of exceedences, σ̃ = σ + ξ(u − μ).

• Set
$$\lambda$$
 to be $(1 + \xi \frac{u-\mu}{\sigma})^{-\frac{1}{\xi}}$ (w.l.o.g) \Rightarrow GEV

Take-aways

- We should model tails of distributions with GEV and GP distributions
 - **Threshold exceedences** from max-stable distributions are GP distributed.
 - Block maxima from max-stable distributions are GEV distributed
 - Motivation for GEV and GP is asymptotic theory
 - We can only justify fitting GEV and GP when we are **clearly** in the tail
- Weibull is a **restricted** choice of distribution for modelling corresponding to $\xi = 0$.
 - Physics (e.g. Miche) tells us that Weibull cannot be correct
 - Weibull might be easier to fit to data (since it is more restricted), but this doesn't necessarily make it better

Effect of ξ

- $Pr(X > x | X > u) = (1 + \xi \frac{x-u}{\sigma})^{-\frac{1}{\xi}}$
- If ξ < 0, there is a finite upper end-point x^F which cannot be exceeded
- If $\xi \geq 0$, the upper end-point $x^F = \infty$
- For ocean waves, observation and physics suggests that x^F is **finite**. e.g Miche:
 - $\frac{1}{2}k_LH_{MAX} = 0.14\pi \tanh(k_Ld)$
 - In deep water, Taylor expansion yields $k_L H_{MAX} = 0.8$ limit
 - In shallow water, Taylor expansion yields $\frac{H_{MAX}}{d} = 0.8$ limit
- Weibull distribution has the upper end-point x^F = ∞, inconsistent with physics

Effect of $\xi < 0$

• As $\xi \uparrow 0$, then $x_F \uparrow \infty$

Changing threshold

• Consider changing threshold from *u* to *v*, *v* > *u*

• Then
$$Pr(X > x | X > u) = (1 + \xi \frac{x - u}{\sigma})^{-\frac{1}{\xi}}$$

$$Pr(X > x | X > v) = \frac{Pr(X > x)}{Pr(X > v)}$$
$$= \frac{Pr(X > x | X > u)}{Pr(X > v | X > u)}$$
$$= \frac{(1 + \xi \frac{x - u}{\sigma})^{-\frac{1}{\xi}}}{(1 + \xi \frac{v - u}{\sigma})^{-\frac{1}{\xi}}}$$
$$= (1 + \xi \frac{x - v}{\sigma + \xi(v - u)})^{-\frac{1}{\xi}}$$

 ξ is unchanged, σ varies linearly with gradient ξ a.a.f.o. threshold

Dutline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Return values

- GP or GEV model with parameters ξ , σ , u
- *p*-year return value x_p is defined by:

$$1 - \frac{1}{p} = \exp\{-\lambda \left(1 + \xi \frac{x_p - u}{\sigma}\right)^{-\frac{1}{\xi}}\}$$

- λ is the expected number of exceedences **per annum**.
- Quantile q of the p-year maximum $x_p(q)$ is defined by:

$$q = \exp(-p\lambda\left(1+\xirac{x_{p}(q)-u}{\sigma}
ight)^{-rac{1}{arepsilon}})$$

• $p\lambda$ is the expected number of exceedences in **p** years.

Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Covariates: outline

- Sample $\{x_i, \theta_i\}_{i=1}^n$ of variate x and covariate θ .
- Non-homogeneous Poisson process model for threshold exceedences
- Davison and Smith [1990], Davison [2003], Chavez-Demoulin and Davison [2005]
- Rate of occurrence of threshold exceedence and size of threshold exceedence are functionally **independent**.
- Other equivalent interpretations.
- Time, season, space, direction, GCM parameters ...

 Generalised Pareto density (and negative conditional log-likelihood) for sizes of threshold excesses:

$$f(x_i; \xi_i, \sigma_i, u) = \frac{1}{\sigma_i} (1 + \frac{\xi_i}{\sigma_i} (x - u_i))^{-\frac{1}{\xi} - 1} \text{ for each } i$$
$$I_E(\xi, \sigma) = -\sum_{i=1}^n \log(f(x_i; \xi_i, \sigma_i, u_i))$$

- Parameters: **shape** ξ , **scale** σ are functions of covariate θ .
- Threshold *u* set prior to estimation.

 (Negative) Poisson process log-likelihood (and approximation) for rate of occurrence of threshold excesses:

$$I_{N}(\mu) = \int_{i=1}^{n} \mu dt - \sum_{i=1}^{n} \log \mu_{i}$$
$$\widehat{I}_{N}(\mu) = \delta \sum_{j=1}^{m} \mu(j\delta) - \sum_{j=1}^{m} c_{j} \log \mu(j\delta)$$

- {c_j}^m_{j=1} counts the number of threshold exceedences in each of *m* bins partitioning the covariate domain into intervals of length δ
- Parameter: **rate** μ , a function of covariate θ .

• Overall:

$$I(\xi, \sigma, \mu) = I_E(\xi, \sigma) + I_N(\mu)$$

with all of ξ , σ and μ smooth with respect to *t*.

• We can estimate μ independently of ξ and σ .

- We can impose smoothness on parameters in various ways.
- In a frequentist setting, we can use penalised likelihood:

$$\ell(\theta) = I(\theta) + \lambda R(\theta)$$

- *R*(θ) is parameter roughness (usually quadratic form in parameter vector) w.r.t. covariate θ.
- λ is roughness tuning parameter
- In a Bayesian setting, we can impose a **random field prior** structure (and corresponding posterior) on parameters:

$$f(\theta|\alpha) = \exp\{-\alpha \sum_{i=1}^{n} \sum_{\theta_{j} \text{ near } \theta_{i}} (\theta_{i} - \theta_{j})^{2}\}$$
$$\log f(\xi, \sigma | \mathbf{x}, \alpha) = I(\xi, \sigma, \mu | \mathbf{x})$$
$$- \sum_{i=1}^{n} \sum_{\theta_{j} \text{ near } \theta_{i}} \{\alpha_{\xi} (\xi_{i} - \xi_{j})^{2} + \alpha_{\sigma} (\sigma_{i} - \sigma_{j})^{2}\}$$

Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Covariates: applications

Fourier directional model for GP shape and scale at Northern North Sea location, with 95% bootstrap confidence band.

Spatial model for 100-year storm peak significant wave height in the Gulf of Mexico (not to scale), estimated using a **thin-plate spline** with directional pre-whitening. Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Multivariate: outline

Component-wise maxima

- Beirlant et al. [2004] is a nice introduction.
- No obvious way to order multivariate observations.
- Theory based on component-wise maximum, M.
 - For sample $\{x_{ij}\}_{i=1}^n$ in *p* dimensions:
 - $M_j = max_{i=1}^n \{x_{ij}\}$ for each *j*.
 - M will probably not be a sample point!
- $P(M \leq x) = \prod_{j=1}^{p} P(X_j \leq x_j) = F^n(x)$
 - We assume: $F^n(a_nx + b_n) \stackrel{D}{\rightarrow} G(x)$
 - Therefore also: $F_j^n(a_{n,j}x_j + b_{n,j}) \stackrel{D}{
 ightarrow} G_j(x_j)$
Homogeneity

- Limiting distribution with Frechet marginals, G_F
 - $G_F(z) = G(G_1^{\leftarrow}(e^{-\frac{1}{z_1}}), G_2^{\leftarrow}(e^{-\frac{1}{z_2}}), ..., G_p^{\leftarrow}(e^{-\frac{1}{z_p}}))$
- $V_F(z) = -\log G_F(z)$ is the **exponent measure** function

•
$$V_F(sz) = s^{-1} V_F(z)$$

Homogeneity order -1 of exponent measure implies asymptotic dependence (or perfect independence)!

Composite likelihood for spatial dependence

• Composite likelihood $I_C(\theta)$ assuming Frechet marginals:

$$I_{C}(\theta) = -\sum_{i=1}^{n} \sum_{j=1}^{n} \log f(z_{i}, z_{j}; \theta)$$

$$f(z_{i}, z_{j}) = \left(\frac{\partial V(z_{i}, z_{j})}{\partial z_{i}} \frac{\partial V(z_{i}, z_{j})}{\partial z_{j}} - \frac{\partial^{2} V(z_{i}, z_{j})}{\partial z_{i} \partial z_{j}}\right) e^{-V(z_{i}, z_{j})}$$

• Exponent measure has simple bivariate parametric form, e.g. :

$$V(z_i, z_j) = (\frac{1}{z_i} + \frac{1}{z_j})(1 - \frac{\alpha(h)}{2}(1 - (1 - 2\frac{(\rho(h) + 1)z_iz_j}{z_i^2 + z_j^2})^2))$$

with two pre-specified functions α and ρ of distance *h* whose parameters must be estimated.

- Component-wise maxima has some pros:
 - Most widely-studied branch of multivariate extremes.
 - Composite likelihood offers some promise, but is itself an approximation.
- And many cons:
 - Hotch-potch of methods.
 - Does not accommodate asymptotic independence.
 - Threshold selection!
 - Covariates!
- Parametric forms.

Extremal dependence

- Bivariate random variable (X, Y):
- asymptotically independent if $\lim_{x\to\infty} \Pr(X > x | Y > x) = 0.$
- asymptotically dependent if $\lim_{x\to\infty} Pr(X > x | Y > x) > 0$.
- Extremal dependence models:
 - Admit asymptotic independence.
- But have issues with:
 - Threshold selection.
 - Covariates!

- Bingham et al. [1987]
- (X_F, Y_F) with Frechet marginals $(Pr(X_F < f) = e^{-\frac{1}{t}})$.
- Assume Pr(X_F > f, Y_F > f) is regularly varying at infinity:

$$lim_{f \to \infty} rac{Pr(X_F > sf, Y_F > sf)}{Pr(X_F > f, Y_F > f)} = s^{-rac{1}{\eta}}$$
 for some fixed $s > 0$

• This suggests:

$$\begin{array}{lll} \Pr(X_{F} > sf, \, Y_{F} > sf) &\approx & s^{-\frac{1}{\eta}}\Pr(X_{F} > f, \, Y_{F} > f) \\ \Pr(X_{G} > g + t, \, Y_{G} > g + t) &= & \Pr(X_{F} > e^{g + t}, \, Y_{F} > e^{g + t}) \\ &\approx & e^{-\frac{t}{\eta}}\Pr(X_{F} > e^{g}, \, Y_{F} > e^{g}) \\ &= & e^{-\frac{t}{\eta}}\Pr(X_{G} > g, \, Y_{G} > g) \end{array}$$

on Gumbel scale X_G : $Pr(X_G < g) = \exp(-e^{-g})$.

- Ledford and Tawn [1996] motivated by Bingham et al. [1987]
- Assume model $Pr(X_F > f, Y_F > f) = \ell(f)f^{-\frac{1}{\eta}}$
 - $\ell(f)$ is a **slowly-varying** function, $\lim_{t\to\infty} \frac{\ell(sf)}{\ell(t)} = 1$
- Then:

$$Pr(X_{F} > f | Y_{F} > f) = \frac{Pr(X_{F} > f, Y_{F} > f)}{Pr(Y_{F} > f)}$$

= $\ell(f)f^{-\frac{1}{\eta}}(1 - e^{-\frac{1}{f}})$
 $\sim \ell(f)f^{1-\frac{1}{\eta}}$
 $\sim \ell(f)Pr(Y_{F} > f)^{1-\frac{1}{\eta}}$

- At $\eta < 1$ (or $\lim_{t\to\infty} \ell(f) = 0$), X_F and Y_F are **As.Ind.**!
- η easily estimated from a sample by noting that L_F , the minimum of X_F and Y_F is approximately GP-distributed: $Pr(L_F > f + s|L_F > f) \sim (1 + \frac{s}{f})^{-\frac{1}{\eta}}$ for large f

Conditional extremes

- Heffernan and Tawn [2004]
- Sample $\{x_{i1}, x_{i2}\}_{i=1}^n$ of variate X_1 and X_2 .
- (*X*₁, *X*₂) need to be transformed to (*Y*₁, *Y*₂) on the same **standard Gumbel** scale.
- Model the **conditional** distribution of *Y*₂ given a large value of *Y*₁.
- Asymptotic argument relies on X_1 (and Y_1) being large.
- Applies to almost all known forms of multivariate extreme value distribution, but not all.

- $(X_1, X_2) \stackrel{PIT}{\Rightarrow} (Y_1, Y_2).$
- $(Y_2|Y_1 = y_1) = ay_1 + y_1^b Z$ for large values y_1 and +ve dependence.
- Estimate *a*, *b* and Normal approximation to *Z* using regression.
- $(Y_1, Y_2) \stackrel{PlT}{\Rightarrow} (X_1, X_2).$
- Simulation to sample joint distribution of (*Y*₁, *Y*₂) (and (*X*₁, *X*₂)).
- Pros:
 - · Extends naturally to high dimensions
 - c.f. copulas
- Cons:
 - Threshold selection for (large number of) models.
 - Covariates!
 - Consistency of $Y_2|Y_1$ and $Y_1|Y_2$ not guaranteed.

Multivariate: applications

Environmental **design contours** derived from a conditional extremes model for storm peak significant wave height, H_S , and corresponding peak spectral period, T_P .

Current profiles with depth (a 32-variate conditional extremes analysis) for a North-western Australia location.

Fourier **directional** model for conditional extremes at a Northern North Sea location.

Current developments

Extreme quantiles from **Bayesian** model incorporating scale uncertainty via a **Box-Cox** transformation, point-wise for North Sea.

Box-Cox scale λ , point-wise for North Sea.

Generalised Pareto shape, point-wise for North Sea.

A Weibull-GP model for the distribution of waves in shallow water.

- **p-spline** approaches to spatio-temporal and spatio-directional extreme value models.
 - Easy specification of multi-covariate roughness.
- **Composite likelihood** approaches to (asymptotically dependent) joint extremes.
- Laplace approximation as alternative to MCMC.
- Statistical down-scaling to estimate climate change effects on structural safety.
- Mixture modelling for elimination of threshold selection

Thanks

philip.jonathan@shell.com www.lancs.ac.uk/~jonathan

References

- J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. *Statistics of Extremes: theory and applications*. Wiley, 2004.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels. *Regular variation*. Cambridge University Press, 1987.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. *J. Roy. Statist. Soc. Series C: Applied Statistics*, 54:207, 2005.
- A. C. Davison. Statistical models. Cambridge University Press, 2003.
- A.C. Davison and R. L. Smith. Models for exceedances over high thresholds. *J. R. Statist. Soc. B*, 52:393, 1990.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B, 66:497, 2004.
- A. W. Ledford and J. A. Tawn. Statistics for near independence in multivariate extreme values. *Biometrika*, 83:169–187, 1996.