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Abstract
We describe a method for detecting, locating and quantifying sources of gas emissions to the at-

mosphere using remotely obtained gas concentration data; the method is applicable to gases of en-
vironmental concern. We demonstrate its performance using methane data collected from aircraft.
Atmospheric point concentration measurements are modelled as the sum of a spatially and tem-
porally smooth atmospheric background concentration, augmented by concentrations due to local
sources. We model source emission rates with a Gaussian mixture model and use a Markov random
field to represent the atmospheric background concentration component of the measurements. A
Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and
measurement locations. Initial point estimates of background concentrations and source emission
rates are obtained using mixed `2-`1 optimisation over a discretised grid of potential source loca-
tions. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values
and uncertainties for the number, emission rates and locations of sources unconstrained by a grid.
Source area, atmospheric background concentrations and other model parameters are also estima-
ted. We investigate the performance of the approach first using a synthetic problem, then apply the
method to real airborne data from a 1600km2 area containing two landfills, then a 225km2 area
containing a gas flare stack.

Key Words: remote sensing, inversion, mixture model, MCMC, reversible jump, com-
pressed sensing, methane, gas flux, greenhouse gases, atmospheric gas dispersion

1. Introduction

There is growing interest in developing methods for detecting and locating sources of gas
emissions into the atmosphere. Greenhouse gases are of intense interest (e.g. Chen and
Prinn [2006], Shakhova et al. [2010]). Other applications include monitoring toxic gas
emissions, locating explosives from their volatile emissions (e.g. Bhattacharjee [2008]])
and mapping naturally occurring gas seeps for oil and gas exploration.The extensive litera-
ture on inversion (and the related field, compressive sensing, e.g. Donoho [2006]) includes
contributions from the statistics, applied mathematics, electrical engineering and physics
communities. Sambridge and Mosegaard [2002] reviews the development and application
of Monte Carlo methods for inverse problems in the Earth sciences in general and geo-
physics in particular. Andersen et al. [2003] presents a method for large scale reservoir
modelling using Bayesian inversion of geo–electric resistivity data using reversible jump
Markov chain Monte Carlo. Rao [2007] reviews source estimation methods for atmospheric
releases of toxic agents, including forward modelling (possibly using Bayesian inference)
and backward transport modelling, emphasising the need to assess uncertainties in charac-
terisation of sources using atmospheric transport and dispersion models. Recent articles
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relevant to the current work include Senocak et al. [2008], Keats et al. [2007], Long et al.
[2010], Rudd et al. [2012] and Gyarmati-Szabo et al. [2011].

In this paper we concentrate on the task of detecting, locating and quantifying the emis-
sion rates of sources of a single gas species of interest, methane, using data acquired during
development and testing of an airborne system for mapping natural gas seeps in hydrocar-
bon exploration over areas typically up to 5000 km2 per flight. We apply the method to
concentration measurements from test flights around a flare stack within a modern natural
gas processing facility, collected at ranges of up to 5km downwind of sources. We make
inferences about source emission rates using gas concentration measurements. The novelty
of the current work lies in the tailored application of a combination of standard statistical
modelling components and inference tools for inversion in remote sensing.

The layout of the paper is as follows. Motivating landfill and flare stack applications
are first described in section 2. Section 3 outlines the modelling procedure and illustrates
it in application to a synthetic problem. Application of the method to the landfill and flare
stack measurements is described in section 4. Section 5 provides a discussion of findings
and suggestions for future development.

A fuller article (Hirst et al.) describing the methodology, its evaluation and field de-
ployment is in preparation.

2. Data

We used an aircraft–mounted sensitive, high precision methane gas sensor to measure a
continuous stream of air from the leading edge of a wing – well away from any fuel/lubricant
or engine exhaust fumes. The sensor continuously measures gas concentration and passes
data to the aircraft’s data logging system with other variables of interest. The sensor de-
livers better than 1 ppb (part per billion by volume) precision concentration data with a
response time of approximately 1 second. Flight data are subsequently merged with spe-
cialist meteorological data, including additional wind, atmospheric boundary layer depth
and auxiliary data: such as the air sample transit time from sample inlet to sensor mea-
surement chamber. The data sets presented here are atypical of normal hydrocarbon seep
surveys, in that we know the locations of sources in the survey areas. Consequently, these
data sets provide a valuable test of our measurement and analysis procedures.

Atmospheric methane is responsible for one third of the global warming effect of CO2

despite methane concentrations being approximately 220 times smaller than those of car-
bon dioxide. There are strong incentives to reduce methane emissions to the atmosphere.
The global average atmospheric methane concentration is approximately 1, 820ppb, in-
creasing at approximately 8ppb per annum [Dlugokencky et al., 2009]. Local atmospheric
background methane concentration can vary by approximately 20 ppb during daytime due
to changes in Atmospheric Boundary Layer (ABL) depth. This layer of the atmosphere
effectively contains all ground level emissions for that day. Its growth is driven by solar
heating of the ground. It is important to account for the associated changes in local back-
ground concentration, so as to more precisely determine that portion of measured concen-
tration attributable to the local sources of interest: since source related concentrations can
be comparable to the albeit much longer term changes in background. The top of the ABL
constitutes a “ceiling” on vertical transport of gases from the ground, and reduces rate of
dilution with downwind distance from the source. This effect is included in the gas disper-
sion model used to relate measured concentration to source strength using multiple ABL
reflection terms.The aircraft must be within the ABL if it is to detect concentrations from
ground level sources.

The flare stack flight comprises 8 separate multi–looped circuits of the flare at altitudes



from 150m to 350m AGL; ABL depth is greater than 1500m. Each circuit intersects the
plume three times at different angles and ranges so as to probe the 3-D structure of the
dispersion plume. Additionally edge detection of the plume serves to establish the in–flight
air sample transit time from inlet to sensor ensuring that concentration measurements are
assigned to their correct physical location and time. The flare stack is 50m high, situated
within a recently completed natural gas processing plant at a coastal location, where winds
are intrinsically more variable. The flare is probably burning methane and light hydrocar-
bons. Photographs of the flare stack show it to be a clean yellow flame, which suggests
it is burning at high efficiency [Kearns et al., 2000]. Methane content of a few percent is
expected in the escaping residual unburnt gas; this is due to thermal decomposition and
incomplete combustion of the fuel-rich hydrocarbon feed [Pekalski et al., 2005].

Wind field information was supplied by the UK Meteorological Office (UKMO) ba-
sed on a 4km grid region embedded within their global circulation model. Initial UKMO
model–based average wind speed and direction are 11ms−1 at −243o. Figure 1 shows the
flight track around and in the vicinity of the flare stack; Figure 2 shows measured methane
concentrations against time. Inspection of the concentration trace along the track in Figure
1 suggests that the UKMO predicted wind direction is inaccurate for this portion of the
flight made late–afternoon over the coastline.

3. Model

3.1 Model form

We seek to locate and quantify emission rates of methane sources and quantify methane
background given n observed atmospheric concentration measurements y = {yi}ni=1 along
airborne trajectory x = {xi}ni=1. y is modelled as the sum of a slowly varying background
b = {bi}ni=1 along the trajectory and contributions due to a distributed group of m sources
at ground level locations z = {zj}mj=1 with emission rates s = {sj}mj=1 and auxiliary
characteristics C = {Cj}mj=1. Measurements along the trajectory are assumed to be made
with independent identically-distributed additive Gaussian errors ε = {εi}ni=1, with εi ∼
N(0, σ2ε ). Steady-state gas transport between a source of unit emission rate at location
zj and measurement location xi in wind field W is given by coupling function aij =
a(xi, zj , Cj ;W). With A = {aij}n,mi=1,j=1, we adopt the model:

y = As+ b+ ε (1)

Model mis-specification can be diagnosed by analysis of residuals.
The wind field W is described by wind vector U at measurement location x, and

horizontal and vertical plume opening angles γH and γV respectively. We approximate
coupling a(x, z, w;U, γH , γV ) between a unit source of half width w at location z and
measurement location x in wind field W by a Gaussian plume model. The measurement
location relative to the plume is expressed in terms of downwind distance δR, and hori-
zontal and vertical offsets δH and δV of measurement location with respect to wind vector.
σH = δR tan(γH)+w and σV = δR tan(γV ) play the role of plume “standard deviations”
in horizontal and vertical directions respectively.
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Figure 1: Flight track around and in vicinity of the flare stack. Blue marker size and co-
lour saturation indicate strength and location of measured methane concentrations. Arrow
shows average direction of predicted air movement during flight. Black annulus indicates
location of flare. The visible discrepancy in alignment of significant concentrations and
flare stack with respect to arrow indicates error in predicted direction of air movement. The
aircraft enters from the SW corner and leaves to the NE corner.

Figure 2: Methane concentrations along flare stack flight path as a function of time.



Figure 3: Illustration of plume model parameters. Red line: source height H . Magenta
line: downwind distance δR of measurement location relative to the source. Cyan line:
horizontal offset δH . Green line: vertical offset δV . Blue line: source half width w. Thick
black horizontal lines perpendicular to wind direction represent ground level and top of
ABL at height D. The current plume model allows for reflections from ground and ABL
ceiling. In this figure δR is too short for reflections to be effective. The hatched blue area
represents the marginal variation with δH of the value of a for δV = 0 and fixed δR. The
hatched red area represents the marginal variation with δV of the value of a for fixed δH
and δR. The locus of the black dot (corresponding to a contour of constant a for fixed δR)
is drawn as a black closed curve.

where D is the height of the atmospheric boundary layer above ground level (referred to
as the atmospheric boundary layer depth). The sum of four exponential terms represents
plume reflections in the ground and at the interface between atmospheric boundary layer
and free atmosphere above it at altitudeD. Values of U,D, γH and γV are obtained directly
from wind field data supplied by UKMO. The plume model parameters are illustrated in
Figure 3. Typical plume characteristics are illustrated and discussed in the literature (e.g.
Senocak et al. [2008]).

Well-mixed background gas concentration b along the trajectory is assumed to be po-
sitive and smoothly–varying spatially and temporally, modelled using a Gaussian Markov
random field. b is a random vector with prior probability density function:

f(b) ∝ exp{−µ
2 (b− b0)

T (Jb)(b− b0)} (3)

with pre-specified precision matrix Jb and tuning parameter µ. Due to the random field’s
conditional independence structure, Jb is guaranteed to be sparse, allowing efficient para-
meter estimation.



3.2 Parameter estimation

Given measured concentrations y on trajectory x and wind field data ({U(xi)}ni=1, γH , γV ),
initial maximum a-posterior estimates for source emission rates s and background b are
obtained by assuming a spatial grid of potential source locations (with suitable grid resolu-
tion). At each grid location, the source emission rate s is given a Laplace prior for s with
pre-specified precision Q and tuning parameter λ:

f(s) ∝ exp{−λ‖Qs‖1} (4)

Applying Bayes theorem by multiplying the Gaussian likelihood corresponding to model 1
with the prior densities for s and b, maximum a-posteriori parameters are seen to corres-
pond to:

argmin
s,b

1
2σ2

ε
‖As+ Pb− y‖2 + µ

2 (b− b0)
TJ(b− b0) + λ‖Qs‖1 (5)

where terms in µ and λ can be viewed as regularisations that impose background smooth-
ness and source sparsity respectively. We further choose to restrict the domain of source
elements such that sj ∈ [0, smax], and background bi ∈ [0, yi + τ ] for tolerance τ .

For full parameter estimation, we assume that each of m sources can be represented
as a two-dimensional Gaussian kernel located at zj with half width wj (corresponding to
the standard deviation of the Gaussian) and source emission rate sj . Using reversible jump
Markov chain Monte Carlo (RJMCMC, Green 1995), we treat m as a random variable,
and estimate the joint distribution of m and all other model parameters. We can also make
inferences about apparent bias and/or uncertainty in wind field parameters and measure-
ment error. Bias-correction of wind direction proves to be important in some applications.
RJMCMC for mixtures of univariate Gaussians was considered by Richardson and Green
[1997] and extended to multivariate Gaussian mixture models by Zhang et al. [2004].

Writing the parameter set {z,w, s,b} as θ for brevity, we proceed by judiciously parti-
tioning θ (to exploit problem structure and ensure reasonable MCMC performance), so that
dependent parameters appear in the same subset θκ of parameters indexed by κ (see, e.g.
Gammermann and Lopez [2006]), and that different sampling techniques (such as Gibbs
sampling, see below) can be exploited for different subsets. The conditional posterior dis-
tribution of parameter subset θκ becomes:

f(θκ|y,θκ) ∝ f(y|θκ,θκ)f(θκ|θκ) (6)

where θκ represents the remaining model parameters. Starting from a good point estimate
for θ, we use a combination of Metropolis-Hastings (Metropolis et al. 1953 and Hastings
1970) and Gibbs sampling (e.g. Geman and Geman 1984) to generate a Markov chain
of points θ = {z,w, s,b} which converge (after burn–in) to a (dependent) sample from
f(z,w, s,b|y). In this way, for a fixed numberm of sources, we can estimate the joint pos-
terior distribution of the model parameters. RJMCMC allows sampling from distributions
for which the number of sources m (and hence the total number of model parameters) is
not fixed by imposing a detailed balance condition to facilitate “dimension jumping”. The
Metropolis-Hastings algorithm can be extended to accommodate “birth” of a new source,
“death” of an existing source, coalescence of neighbouring sources and source division.
The Markov chain will therefore explore estimates of z, w and s of different dimensions
together with b. Inference can be extended to include estimation of quantities such as the
measurement error standard deviation σε, bias of wind vector U and horizontal and vertical
plume opening angles γH and γV . In the analysis reported in section 4, σε (see (1)), and
additive wind direction bias (used in (2)) are included as model parameters in the Bayesian
inference.



4. Application

The survey area is partitioned into an 50 × 50 grid of 300m × 300m cells for initial point
estimation. The RJMCMC starting point is chosen by sampling 5 locations from the initial
optimisation solution, weighted by emission rate.

Figure 1 shows a clear discrepancy between plume direction and mean wind direction
predicted by UKMO wind field data. The mixture model, incorporating a constant wind
direction bias parameter, successfully corrects this. Inspection of Figure 1 suggests a prior
wind direction bias of approximately −18o. The corresponding posterior 95% credible
interval is estimated to be [−18.12,−17.2]o. This uncharacteristically large wind bias is
attributed to the flight being in the late afternoon (as the ABL subsides) and is situated at the
coast where winds are inherently less predictable. Estimated source emission rates are sum-
marised in emission rate maps in Figure 4 . Panel a) shows the initial optimisation solution.
Panel b) shows the posterior median estimate. We summarise marginal spatial uncertainty
in terms of the 2.5% and 97.5% credible values for source emission rates shown in Panels
c) and d) respectively. Source emission rates in Figure 4 are estimated using corrected
wind directions, otherwise the initial optimisation solution (Panel (a)) would be severely
compromised. The posterior median mixture model result (Panel (b)) is very similar. Panel
(c) shows that 2.5% credible values from the mixture model are ≤ 0.004m3s−1. Marginal
97.5% credible values in Panel (d) suggest some uncertainty in flare stack location in the
wind direction due to the difficulty of “depth resolution” in a relatively stable wind field.

Figure 5 (a) compares initial point and MCMC background estimates, the latter with
with credible intervals. The correspondence is reasonable. Figure 5 (b) compares unexplai-
ned residual concentration with measured concentration from initial point solution (red)
and MCMC (black). For a good model fit, we expect residuals to be zero–mean and show
no relationship to the measured concentration. The MCMC residuals are relatively well
distributed around zero. For the initial point solution, residuals corresponding to low mea-
sured concentrations close to true background (1800ppb) are small; for larger simulated
concentrations, residuals are larger and positive since the Laplace prior over source emis-
sion rate (4) penalises source strength, generally resulting in positive residuals. Source
locations are constrained to the centres of grid cells for the optimisation solution, but not
for the mixture model estimate. The interested reader should note that the case presented is
a typical example from a number of simulated cases considered but omitted for brevity.

5. Discussion

Individual model components and inference tools used in this work are commonplace in the
statistical modelling literature. The combination of components and tools, pulling together
physical constraints with rigourous analysis, has proved useful for the remote sensing ap-
plications considered in this work. Nevertheless, to the best of our knowledge, this is one of
the first applications of Bayesian inference using reversible-jump MCMC to simultaneous
multiple source and smooth spatio–temporal background estimation. The Gaussian plume
model is a particularly simple steady–state approximation to dispersion of a gas release
into the atmosphere, widely used in the environmental modelling literature (e.g. Gifford
[1976]). In this work, the plume model provides a reasonable basis for estimating known
flare stack and landfill locations. However, we find that correcting bias in (predicted) wind
directions supplied by UKMO improves inference. There is evidence, in the form of a
“ghost” source downwind of the eastern landfill, that a simple bias correction is not ade-
quate for the long transit times of this extreme case, and that a more sophisticated approach
(e.g. a slowly varying wind-direction bias) might be beneficial. There is considerable op-



Figure 4: Estimated source emission rate maps for the flare stack application: (a) Estimate
from the initial optimisation, (b) Median estimate from the mixture model, (c) Marginal
2.5% credible value from the mixture model, and (d) Marginal 97.5% credible value from
the mixture model. All dimensions in km. Emission rates in m3s−1. Each panel shows a
common subregion of the original 15km × 15km domain (referenced with respect to the
origin) within which all sources are estimated. For ease of comparison the mixture model
results are presented on the same grid cell size as the optimsation solution. The black
annulus indicates the location of the flare stack, a point source. The flight path is shown as
a red line.

Figure 5: Diagnostics for the flare stack application: (a) Estimated background concentra-
tions along the flight path as a function of time. The initial optimisation is shown in red
and the mixture model result is shown in black; median (solid), 2.5% and 97.5% credible
values (both dashed) shown. (b) Residuals versus measured methane concentrations from
the initial optimisation (red) and median from the mixture model (black).



portunity to achieve this within the Bayesian modelling framework. Incorporating plume
model uncertainty in the initial optimisation can be achieved in some sense by considering
optimisation over a representative set of forward model matricesA (in Equation (1)), rather
than a single choice. Predicated on the availability of wind field data of adequate quality
we might also consider more sophisticated plume models, e.g. plumes following wind
flow lines, or from computational fluid dynamics. In the MCMC case, we assume a-priori
that sources can occur with equal probability at any location. For RJMCMC we sample
those grid locations from the optimisation solution with the greatest emission rates as a
starting solution. Work continues to explore incorporation of spatial prior distributions for
source location, for example using Polya trees to encode some degree of source clustering.
There is scope to develop more sophisticated background models incorporating parameters
known to influence background methane concentration (such as topography). Our field
experience suggests that natural gas seeps can be intermittent, requiring adaptation of our
model formulation. Smoothly varying gas release rates could be accommodated relatively
simply.

The Gaussian plume model provides an elementary means of modelling gas transport
from source to measurement location under ideal steady state wind field assumptions, allo-
wing rapid estimation of forward model matrices A at the expense of accuracy and preci-
sion. Given inherent uncertainties in the estimates of wind field parameter values supplied
by UKMO, we consider the Gaussian plume adequate for the purposes of the current work.
For example in the landfills application, assuming ideal wind field conditions over an in-
terval of approximately 10 minutes for wind speed of approximately 6.5ms−1, suggests
that the plume model is appropriate for measurement locations within approximately 4km
downwind of a source. More distant measurement locations require ideal conditions over
longer periods for the Gaussian plume model to be appropriate. Nevertheless, even over lar-
ger distances, the Gaussian plume is likely to provide reasonable approximation to reality
provided the wind field remains relatively steady.

As implemented in the current work, optimisation is used to provide an initial point so-
lution for inversion on a spatial grid. Subsequent Bayesian inference gives a more flexible
grid-free mixture model framework within which to estimate the joint posterior distribu-
tion of all parameters, providing in particular estimates for parameter uncertainty. Early
attempts at inversion followed a stepwise approach in which atmospheric background was
estimated prior to, and independent of emission sources. The current approach, involving
simultaneous estimation of background, sources and wind field characteristics improves
performance. We also explored Bayesian inference on the same spatial grid used for the
initial optimisation. The very large number of potential source locations makes this com-
putationally intensive.

Our experience of processing multiple survey data sets has made clear the need for ri-
gourous data management and pre-processing procedures. Efficiency of inference can be
improved for a given deployment by specifying a flight trajectory (or sequence of flight tra-
jectories) appropriately, given predicted wind conditions and available information concer-
ning likely source locations. Methods of statistical experimental design are central to achie-
ving this for both airborne and ground based line–of–sight gas sensors. It is also strongly
desirable to have a means of confirming the quality of inference, particularly of source
location and release rate, using a persistent known gas source within the region of interest.
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