David Randell Philip Jonathan (Michael Goldstein)

25 February 2010

Introduction and motivation

Large systems Modelling

Updating beliefs

The Bayes linear approach Exchangeable events Making decisions

Application: corrosion monitoring

Corrosion monitoring Data characteristics Bayes linear variance learning Model diagnostics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Conclusions and future work

Large systems

- Research: galaxy evolution, climate change
- Manufacturing: fouling, corrosion, fatigue
- Environmental: ground, water and airborne monitoring
- Commerce: financial, transactional, software

Large systems

System characteristics

- High dimensional (> 1000 variables)
- Dependent variables (e.g. in time or space)
- Evolves (e.g. in time)
- Observed with error
- Observing complete system prohibitively costly

Introduction and motivation

Large systems

Method components

- 1. Specify model
 - Partial belief structure
 - Exchangeability assumptions (if any)
- 2. Simulate to estimate full belief structure
- 3. Adjust expectations given beliefs and observations
 - Incomplete and irregular observations
 - ► Learn about system level and (co-)variance structure

- 4. Simulate adjusted system to forecast
- 5. Make decision
 - Expected loss to optimise decision

Learning about large industrial systems
Introduction and motivation
Modelling

Typical model specification

- Two spatial dimensions (I, c), one temporal (t)
- Observations in time (t) and one spatial dimension (c) only

- Observations with error (eylct)
- **Global** evolution $(\epsilon_{\Theta ct})$ with respect to t and c
- ▶ Local evolution in *I* dimension (*ϵ_{rlct}*) relative to global

Typical model form

Observation:	$Y_{ct} = f_l \left(Z_{lct} + \epsilon_{Ylct} \right)$	$\operatorname{Var}(\epsilon_{Ylct}) = \sigma_Y^2$
System:	$Z_{lct} = \mathbf{F} \mathbf{\Theta_{ct}} + r_{lct}$	
Global Effects:	$\boldsymbol{\Theta}_{ct} = \mathbf{G} \boldsymbol{\Theta}_{ct-1} + \boldsymbol{\epsilon}_{\boldsymbol{\Theta}ct}$	$\operatorname{Var}(\epsilon_{\Theta t}) = \Sigma_{\Theta}$
Local Effects:	$r_{lct} = g(r_{lct-1}) + \epsilon_{rlct}$	$\operatorname{Var}(\epsilon_{rlct}) = \sigma_{rl}^2$

- f_l reduces (or "integrates" over) l
- g describes local evolution
- F and G are regression and system evolution matrices

Learning about large industrial systems
Introduction and motivation
Modelling

Partial to full beliefs

Specify partial beliefs:

- ▶ Specify model form *f*_{*l*}, **F**, **G** and *g*
- Specify variance structures σ_Y^2 , Σ_{Θ} and σ_{rl}^2
- Specify initial values for Θ_{c0} and r_{lc0}

Estimate full beliefs:

- Generate multiple realisations of model evolution
- Calculate empirical estimates for any expectations and (co-)variance structures of interest

- ▶ In particular: $E(\mathbf{Y})$, $Var(\mathbf{Y})$, $Cov(\mathbf{Y}, \mathbf{\Theta})$
- ► Also: $E(\Theta)$, $Var(\Theta)$...

The Bayes linear approach

Full Bayesian modelling of large systems:

- Difficult or impractical to make full prior specifications
- Non-physical simplifications required for modelling

Bayes linear modelling:

- Requires specification of partial beliefs only
- Is computationally efficient for high dimensional problems
- Uses expectation as a primitive rather than probability
- Beliefs are updated using adjusted expectations
- de Finetti [1974] or Goldstein and Wooff [2007]

Adjusting beliefs

Observe data D to update beliefs B

The **adjusted expectation** vector for *B* given *D* is:

$$E_D(B) = E(B) + \operatorname{Cov}(B, D)\operatorname{Var}(D)^{\dagger}(D - E(D))$$

The **adjusted variance** matrix for *B* given *D* is:

 $\operatorname{Var}_D(B) = \operatorname{Var}(B) - \operatorname{Cov}(B, D)\operatorname{Var}(D)^{\dagger}\operatorname{Cov}(D, B)$

- ► *E_D*(*B*) used as an **updated estimator** for *B*
- ► Var_D(B) can be viewed as the mean square error of the estimator E_D(B)

└─ The Bayes linear approach

Motivating Bayes linear

Two collections of random quantities, $B = (B_1 \dots B_r)$ and $D = (D_1 \dots D_s)$. The **adjusted expectation** for B_i given D is the linear combination $a_i^T D$,

$$E_D(B) = \sum_{i=0}^s a_i^{ \mathrm{\scriptscriptstyle T} } D_i$$

which minimises;

$$E\left((B_i-\sum_{i=0}^k a_i^T D_i)^2\right)$$

over choices of a_i^{T} .

Must specify prior mean vectors and variance matrices for B and D and a covariance matrix between B and D.

Exchangeable events

- In an exchangeable sequence of random variables, future samples behave like earlier ones
- ► A collection of quantities X = {X₁, X₂,...} is exchangeable if our beliefs are invariant under permutation of X
- The role of exchangeability in subjective analysis is analogous to that of independence in classical inference
- An exchangeable sequence can be represented as a mixture of underlying i.i.d. sequences (de Finetti [1974])

Learning about large industrial systems
Updating beliefs
Exchangeable events

Exchangeability and independence

Independent events are exchangeable, but exchangeable events may not be independent

- A sequence of i.i.d. random variables is exchangeable
- Sampling without replacement is exchangeable, but not independent
- ► For the bivariate normal random variable:

$$Z \sim N\left(\left(\begin{array}{c} 0\\ 0 \end{array}\right), \left(\begin{array}{c} 1 & \rho\\ \rho & 1 \end{array}\right) \right)$$

components Z_1 and Z_2 are exchangeable, but independent only if $\rho = 0$

Second order exchangeability

A collection $X = \{X_1, X_2, ...\}$ is second order exchangeable if our beliefs about first and second order specification are invariant under permutation of X

$$E(X_i) = \mu$$
 $\operatorname{Var}(X_i) = \sigma$ $\operatorname{Cov}(X_i, X_j) = \gamma$ $i \neq j$

Equivalent to full exchangeability for Bayes linear modelling

Learning about large industrial systems
Updating beliefs
Exchangeable events

The representation theorem

For (s.o.) exchangeable $X = X_1, X_2, ...$, we **represent** each X_i as the sum of two random quantities, a "**mean**" plus "**residual**":

$$X_i = \mathcal{M} + \mathcal{R}_i$$

Each pair \mathcal{R}_i and \mathcal{R}_j are **uncorrelated** $i \neq j$ and each \mathcal{R}_i is uncorrelated with \mathcal{M} (Goldstein [1986])

$$\begin{aligned} E(\mathcal{M}) &= \mu & & \operatorname{Var}(\mathcal{M}) &= \gamma \\ E(\mathcal{R}_i) &= 0 & & \operatorname{Var}(\mathcal{R}_i) &= \sigma - \gamma \end{aligned}$$

- Simplifies specification of (co-)variance structures
- Adjust beliefs about \mathcal{M} not X_i

Exchangeable errors: simple (co-)variance structures

Global Effects:
$$\Theta_{ct} = G\Theta_{ct-1} + \epsilon_{\Theta ct}$$
 $Var(\epsilon_{\Theta t}) = \Sigma_{\Theta}$

Assume (s.o.) exchangeability of $\epsilon_{\Theta ct}$ over c and t

$$\epsilon_{\Theta ct} = \mathcal{M}_{\Theta} + \mathcal{R}_{\Theta ct}$$

- Then $Var(\epsilon_{\Theta ct}) = \sigma_{\Theta}^2$, for all c and t
- And $\operatorname{Cov}(\epsilon_{\Theta c't'}, \epsilon_{\Theta ct}) = \gamma_{\Theta}$, for all $c' \neq c$ and $t' \neq t$
- Hence, a simple **two parameter form** for $\Sigma_{\Theta} = \Sigma_{\Theta}(\sigma_{\Theta}^2, \gamma_{\Theta})$

Exchangeable squared errors: (co-)variance learning

Global Effects: $\Theta_{ct} = G\Theta_{ct-1} + \epsilon_{\Theta ct}$ $Var(\epsilon_{\Theta t}) = \Sigma_{\Theta}$ Assume (s.o.) exchangeability of $\epsilon_{\Theta ct}^2$ over c and t

$$\epsilon_{\Theta ct}^2 = \mathcal{M}_V + \mathcal{R}_{Vct}$$

- Then $E(\epsilon_{\Theta ct}^2) = E(\mathcal{M}_V) = \sigma_{\Theta}^2$, for all c and t
- Hence adjusting beliefs about M_V allows us to learn about variances

- Updating beliefs

Exchangeable events

Method components revisited

- 1. Specify model
 - Partial belief structure
 - Exchangeability assumptions (if any)
- 2. Simulate to estimate full belief structure
- 3. Adjust expectations given beliefs and observations
 - Incomplete and irregular observations
 - ► Learn about system level and (co-)variance structure

- 4. Simulate adjusted system to forecast
- 5. Make decision
 - Expected loss to optimise decision

Making decisions: Optimal inspection design

- Identify good inspection designs with which to update our beliefs
- Potential designs evaluated in terms of reducing uncertainty about critical system characteristics
- Utility or loss is used to compare designs

For example:

Simple decision to replace or retain a system component subject to potential costly failure

Loss for component replacement

- Simple maintenance decision $\delta \in \Delta$ to replace R or retain \overline{R} .
- Outcome $o \in O$ is either failure F or survival \overline{F} .
- Loss $L(o, \delta)$ is specified as:

$$\begin{array}{c|c} F & \overline{F} \\ \hline R & L_R & L_R \\ \overline{R} & L_F & 0 \end{array}$$

Learning about large industrial systems
Updating beliefs
Making decisions

Expected loss with observed data

For **observed** data **D**:

 $E_{[O|D]}[L(O,\delta)|D] = L(F,\delta)\operatorname{Pr}(F|D) + L(\bar{F},\delta)\operatorname{Pr}(\bar{F}|D)$

$$\begin{split} E[L(O,R)|D] &= L(F,R)\mathrm{Pr}(F|D) + L(\bar{F},R)\mathrm{Pr}(\bar{F}|D) = L_R\\ E[L(O,\bar{R})|D] &= L(F,\bar{R})\mathrm{Pr}(F|D) + L(\bar{F},\bar{R})\mathrm{Pr}(\bar{F}|D) = L_F\mathrm{Pr}(F|D) \end{split}$$

Replacement is selected when:

$$E[L(O, R)|D] < E[L(O, \overline{R})|D]$$
$$\Pr(F|D) > \frac{L_R}{L_F}$$

Expected loss with unobserved data

Expected loss of decision δ based on **as yet unobserved** data D from **design** d is:

$$\begin{split} E_{[O]}[L(O,\delta)] &= E_{[D]}\{E_{[O|D]}[L(O,\delta)|D]\}\\ &= E_{[D]}\{L(F,\delta)\mathrm{Pr}(F|D) + L(\bar{F},\delta)\mathrm{Pr}(\bar{F}|D)\} \end{split}$$

Optimal decision δ^* satisfies:

$$\delta^* = \begin{cases} R \text{ if } \Pr(F|D) > \rho \\ \bar{R} \text{ if } \Pr(F|D) \le \rho \end{cases} \quad \text{where} \quad \rho = \frac{L_R}{L_F}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $= L_R I_1 + L_F I_2$

- + $L_F E\{\Pr(\Pr(F|D) | \Pr(\Pr(F|D) \le \rho)\}\Pr(\Pr(F|D) \le \rho)\}$
- $= L_R \Pr(\Pr(F|D) > \rho)$
- + $E\{L(F, \delta^*) \Pr(F|D) + L(\overline{F}, \delta^*) \Pr(\overline{F}|D) | \delta^* = \overline{R}\} \Pr(\delta^* = \overline{R})$

- $= E\{L(F,\delta^*)\Pr(F|D) + L(\bar{F},\delta^*)\Pr(\bar{F}|D)|\delta^* = R\}\Pr(\delta^* = R)$
- $= E_{[D]}\{L(F,\delta^*)\Pr(F|D) + L(\bar{F},\delta^*)\Pr(\bar{F}|D)\}$
- $= E_{[D]} \{ E_{[O|D]} [L(O, \delta^*) | D] \}$

Expected loss for **design**, $E[L(O, \delta^*)]$ $E_{[O]}[L(O, \delta^*)]$

Updating beliefs

Learning about large industrial systems

Expected loss for **design**, $E[L(O, \delta^*)]$

$$E[L(O, \delta^*)] = L_R I_1 + L_F I_2$$

- Integrals *I*₁ and *I*₂ evaluated for given probability distributions characterised by location and scale parameters
- Adjusted expectations and variances from the Bayes linear update used to estimate location and scale
- Computationally fast: no need to simulate data D for given design d

Learning about large industrial systems
Application: corrosion monitoring
Corrosion monitoring

Application: Corrosion monitoring of offshore platform

Learning about large industrial systems
Application: corrosion monitoring
Corrosion monitoring

Corrosion monitoring

- Offshore platforms have large numbers of components subject to corrosion
- Corrosion can lead to failure incurring costs
- A typical offshore platform has >100 corrosion circuits, each with 20 to 1000 components, hence potentially >5000 components subject to corrosion.

Some corrosion circuits have similar characteristics

Learning about large industrial systems — Application: corrosion monitoring

Corrosion monitoring

Typical corrosion circuit diagram

Data characteristics

- Minima: over whole component observed
- Short time series: data per component is limited, but large number of components
- Irregular inspections: inspections are carried out when possible, often when processes are shut down, often several months or years apart
- Incomplete inspections: due to size of systems and inaccessibility of components, complete systems are rarely inspected

Typical inspection design for a corrosion circuit

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Application: corrosion monitoring

Data characteristics

Method components

- 1. Specify model
 - Partial belief structure
 - Exchangeability assumptions (if any)
- 2. Simulate to estimate full belief structure
- 3. Adjust expectations given beliefs and observations
 - Incomplete and irregular observations
 - ► Learn about system level and (co-)variance structure

- 4. Simulate adjusted system to forecast
- 5. Make decision
 - Expected loss to optimise decision

Model

The system is modelled as:

$$\begin{aligned} Y_{tc} &= \min_{l} \left(X_{tc} + r_{tcl} + \epsilon_{Ytcl} \right) & \operatorname{Var}(\epsilon_{Ytcl}) = \sigma_{Yc}^{2} \\ X_{tc} &= X_{t-1c} + \alpha_{tc} + \epsilon_{Xtc} & \operatorname{Var}(\epsilon_{Xtc}) = \Sigma_{X} \\ \alpha_{tc} &= \alpha_{t-1c} + \epsilon_{\alpha tc} & \operatorname{Var}(\epsilon_{\alpha tc}) = \Sigma_{\alpha} \\ r_{tcl} &= r_{t-1cl} + \epsilon_{rtcl} & \operatorname{Var}(\epsilon_{rtcl}) = \sigma_{rc}^{2} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Learning about wall thickness and corrosion rate

- Perform simulations of model based on partial belief specification
- Simulations together with inspection data yield updated adjusted expectations for wall thickness and corrosion rate parameters

 Modelling covariance structure, we learn about all components even unobserved

Typical covariance structure based on adjacency

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Variance learning: why?

- Prior specification of (co-)variances is difficult
- Variance parameters in model typically fixed. Poor prior specification leads to poor model performance
- Variance is not directly observable. Adjusting beliefs more difficult

Variance learning: simple corrosion model For example:

$$X_{ct} = X_{ct-1} + \alpha_{ct} + \epsilon_{Xct}$$
$$\alpha_{ct} = \alpha_{ct-1} + \epsilon_{\alpha ct}$$

Differences of observations eliminate effects of wall thickness' and corrosion rates (Wilkinson [1997])

$$X_t^{(1)} = X_{ct} - X_{ct-1} = \alpha_{ct} + \epsilon_{Xct} = \alpha_{ct-1} + \epsilon_{\alpha ct} + \epsilon_{Xct}$$
$$X_t^{(2)} = X_{ct} - X_{ct-2} = X_{ct-1} + \alpha_{ct} - X_{ct-2} + \epsilon_{Xct}$$
$$= \alpha_{ct} + \alpha_{ct-1} + \epsilon_{Xct} + \epsilon_{Xct-1}$$
$$= 2\alpha_{ct-1} + \epsilon_{\alpha ct} + \epsilon_{Xct} + \epsilon_{Xct-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variance learning: squared differences

Therefore:

$$X_t^{(2)} - 2X_t^{(1)} = -\epsilon_{\alpha ct} - \epsilon_{Xct} + \epsilon_{Xct-1}$$

and:

$$E[(X_t^{(2)} - 2X_t^{(1)})^2] = E[(-\epsilon_{\alpha ct} - \epsilon_{Xct} + \epsilon_{Xct-1})^2]$$
$$= E[\epsilon_{\alpha ct}^2] + E[\epsilon_{Xct}^2] + E[\epsilon_{Xct-1}^2]$$
$$= \sigma_{\alpha c}^2 + 2\sigma_{Xc}^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Variance learning: exchangeability in time

Assume squares of residuals are (s.o.) exchangeable in time. Using representation theorem:

$$[\epsilon_{Xct}]^2 = \mathcal{M}(V_c) + \mathcal{R}_t(V_c)$$

where:

$$E([\epsilon_{Xct}]^2) = \sigma_{Xc}^2 = V_c \quad \text{Var}([\epsilon_{Xct}]^2) = \Sigma_{V_c}$$
$$Cov([\epsilon_{Xct}]^2, [\epsilon_{Xct'}]^2) = \Gamma_{V_c} \quad t \neq t'$$

Variance learning: adjusting beliefs

Compute $E_D[\mathcal{M}(V_c)]$:

$$D = \left\{ \frac{(X_t^{(2)} - 2X_t^{(1)})^2}{2 + \lambda} \right\}_{t=3}^T$$

 $E_D[\mathcal{M}(V_c)] = E[\mathcal{M}(V_c)] + \operatorname{Cov}[\mathcal{M}(V_c), D]\operatorname{Var}[D]^{-1}(D - E(D))$ $= \sigma_{Xc}^2 + 2'_T \Gamma_{V_c} \operatorname{Var}[D]^{-1}(D - 1_T(\sigma_{\alpha c}^2 + 2\sigma_{Xc}^2))$

yielding an adjusted estimate for the variances in the model

Application: corrosion monitoring

Bayes linear variance learning

Variance learning: generalisations

Generalisations include:

- General time step form for irregular time points
- Partial inspections using exchangeable variances across components
- Mahalanobis distance fitting to update local variances

Learning about large industrial systems
Application: corrosion monitoring
Model diagnostics

Model diagnostics

 Mahalanobis distance to estimate data discrepancy, comparing data to our prior estimates

$$\operatorname{Dis}(X) = \frac{(D - E(D))^2}{\operatorname{Var}D}$$

 For each of our updated values we can also compute the adjustment discrepancy

$$\operatorname{Dis}_D(X) = \frac{(E_D(X) - E(X))^2}{\operatorname{RVar}_D X}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Learning about large industrial systems Application: corrosion monitoring

Model diagnostics

Typical model diagnostics

Learning about large industrial systems — Conclusions and future work

Conclusions

General purpose framework for modelling and inspection design of large systems

Compared to existing methods, the model is novel in that:

- Analysis of multivariate systems possible, rather than modelling components separately and independently
- Data from incomplete inspections at arbitrary times used to learn about the whole system
- Uncertainties in system parameters adjusted, as are the dependencies between these
- Economically-optimal future inspection strategies can be estimated consistently

Learning about large industrial systems — Conclusions and future work

Future work

- Efficient implementation of sequential Bayes linear calculation
- Search methods for good designs in high dimensions
- Elicitation of prior partial beliefs
- Flexible forms for modelling for system element behaviour
- Enhanced criteria for evaluation of inspection schemes
- Fundamental modelling of physical processes (e.g. corrosion)
- New applications to manufacturing, environmental and commercial problems

Thank you

david.randell@durham.ac.uk philip.jonathan@shell.com

Randell et al. [February 2010]

www.lancaster.ac.uk/~jonathan

- B. de Finetti. *Theory of Probability*. Wiley series in probability and mathematical statistics. Wiley, London, 1974.
- M. Goldstein. Exchangeable belief structures. *Journal of the American Statistical Association*, 81:971–976, 1986.
- M. Goldstein and D. Wooff. Bayes Linear Statistics: Theory and Methods. Wiley Series in Probability and Statistics. Wiley, New York USA, 2007.
- D. Randell, M. Goldstein, G. Hardman, and P. Jonathan. Bayesian linear inspection planning for large scale physical systems. *Submitted to Journal of Risk and Reliability*, February 2010.
- D. J. Wilkinson. Bayes linear variance adjustment for locally linear dlms. *Journal of Forecasting*, 16:329–342, 1997.

 \square Conclusions and future work

Backup

$$E_{[Y]}(g(Y)) = E_{[X]}(E_{[Y|X]}(g(Y)|X))$$
$$E_{[Y|X]}(g(Y)|X) = \sum_{i} g(Y_i) \operatorname{Pr}(Y_i|X)$$

(ロ)、(型)、(E)、(E)、 E) の(の)