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With increasing availability of good directional data, provision of directional estimates of extreme
significant wave heights, in addition to the omni-directional estimates, is more common. However,
interpretation of directional together with omni-directional design criteria is subject to inconsistency,
even in design guidelines. In particular, omni-directional criteria are usually estimated ignoring
directional effects. In this article, for data which exhibit directional effects, we show that a directional
extreme value model generally explains the observed variation significantly better than a model which
ignores directionality, and that omni-directional criteria developed from a directional model are
different from those generated when directionality is not accounted for. We also show that omni-
directional criteria derived from a directional model are more accurate and should be preferred in
general over those based on models which ignore directional effects. We recommend use of directional
extreme value models for estimation of both directional and omni-directional design criteria in future,
when good directional data are available. If effects of other covariates (e.g. time or space) are suspected,
we similarly recommend use of extreme value models which adequately capture sources of covariate

variability for all design analysis.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Historically, design wave criteria have generally been based on
omni-directional estimates—that is, sea state criteria that are
relevant for any direction of approach. However, to take advantage
of directional effects in optimising cost of offshore facilities, and
with increasing availability of good wave direction data, it is
common to provide directional estimates of extreme significant
wave heights, in addition to the omni-directional estimate. The
practice has been to associate an appropriate wave direction, such
as the mean wave direction or the direction of spectral peak, with
the significant wave height of a given sea state. The significant
wave height values selected for extreme value analysis are
then binned into directional sectors, with sector limits chosen
arbitrarily either on a fixed number (typically eight) centred on
the cardinal directions or on the basis of a perceived directionality
in the data. Both sectoring approaches make the assumption that
statistics are homogeneous within each sector. Extremal analyses
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are then performed on the significant wave height values in each
sector, and also on the complete set of values ignoring direction.
Design values with a given return period are then specified for
each directional sector and for all directions, the latter being the
omni-directional estimate.

Unfortunately, this approach has often led to inconsistencies in
design criteria, such as that the probability of exceedance of a
given significant wave height when calculated from the direc-
tional criteria is different from that obtained from omni-
directional criteria. A discussion of this problem is given by
Forristall (2004). Guidelines such as API (2005) and ISO (2005)
provide recommendations on treating directional criteria, but
even when these are followed, either inconsistency remains (in
the case of API) or insufficient detail is given on how to make the
criteria consistent (in the case of ISO).

Numerous authors have reported the essential features of
extreme value analysis (e.g. Davison and Smith, 1990) and the
importance of considering different aspects of covariate effects.
Coles and Walshaw (1994) describe directional modelling of
extreme wind speeds. Robinson and Tawn (1997) describe
directional modelling of extreme sea currents. Anderson et al.
(2001) report that estimates for 100-year maximum Hs from an
extreme value model ignoring seasonality are considerably
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smaller than those obtained using a number of different seasonal
extreme value models. Chavez-Demoulin and Davison (2005) and
Coles (2001) provide straight-forward descriptions of a non-
homogeneous Poisson model in which occurrence rates and
extremal properties are modelled as functions of covariates.
Carter and Challenor (1981) consider estimation of annual
maxima from monthly data, when the distribution functions of
monthly extremes are known. They prove in this case that the
distribution function of the maximum from a random sampling of
the annual population is greater than or equal to the distribution
function of the proportionally sampled monthly sub-populations,
with equality only when monthly distributions are equal.

Recently, Jonathan and Ewans (2007) and Ewans and Jonathan
(2008) have borrowed elements of developments from the
statistics literature to model directional effects smoothly in a
way that better reflects nature and observed data in application to
Gulf of Mexico and North Sea hindcast data. Consistency between
directional and omni-directional criteria follows directly in a
rigourous way in these analyses, but the analyses also demon-
strate a perhaps more significant aspect to establishing omni-
directional criteria that we believe is not widely recognised by
practitioners. Specifically, (i) a directional model generally
explains the observed variation of extremes significantly better
than a model which ignores directionality, (ii) omni-directional
criteria developed from a directional model are different from
those generated when directionality is not accounted for, and thus
(iii) omni-directional criteria derived from a directional model are
more realistic and should be preferred in general. These facts
challenge traditional practice and warrant special attention.
Accordingly, we have undertaken specific simulation studies to
demonstrate unambiguously that omni-directional criteria should
be derived using a directional model in cases where good
directional data exist.

Covariate effects are not restricted to direction, but are equally
relevant for other covariates, such as time and space. We focus
here on directionality due to widespread current practice of
providing directional criteria. Nevertheless, findings are transfer-
rable to covariate effects generally.

The outline of the article is as follows. In Section 2 we give
some theoretical background to the problem at hand. In Section 3
we introduce a series of case studies based on an idealised model
used thereafter to demonstrate the importance of directional
modelling on estimation of omni-directional criteria. Sections 4
and 5 give results and discussion for various scenarios corre-
sponding to different assumed extremal characteristics for the toy
model. Conclusions are drawn and recommendations made in
Section 6. In the appendix, following a query from a discussant,
we demonstrate informally that the distribution of the p-year
maximum can be obtained equivalently from either the condi-
tional distribution of peaks over threshold or from the uncondi-
tional distribution.

2. Theory

Extreme value analysis of ocean storms is performed as part of
design assessment of offshore and coastal structures. In essence,
for data in the form of block maxima (e.g. monthly or annual
maxima), this analysis involves fitting a generalised extreme value
(GEV) distribution. Then extreme quantiles of the fitted distribu-
tion are used as design values. The choice of GEV distribution for
block maxima is justified asymptotically, since the distribution of
the maxima of independent random variables converges to GEV
(see, e.g., Coles, 2001). When data take the form of peaks over
threshold, we fit using a generalised Pareto (GP) distribution,
since again the distribution of peaks over high threshold for

independent random observations converges in a certain sense to
GP (see, e.g., Embrechts et al., 2003). The GEV and GP distributions
are intimately related; if the number of exceedances of a high
threshold is assumed Poisson-distributed, and exceedances over
threshold are characterised by GP, then the distribution of the
maximum over threshold is GEV.

Extreme value behaviour of ocean storms is often dependent
on covariates such as storm direction, geographic location and
season. Extremal behaviour may also show long-term trends in
time throughout the period under consideration. Covariate effects
are often ignored in practice because of small sample size and
complexity of extreme value modelling with covariates. However,
it is important that effects of covariates are adequately modelled.
Improvements in structural reliability for no additional cost are
achievable in principle if covariate effects are incorporated in the
specification of design criteria in general, e.g. by (a) designing
structures with different strengths in different directions,
(b) locating structures in the most benign environments, and
(c) performing activities of limited duration during the more
benign periods, all consistent with other operational requirements
for the offshore structure. Moreover, estimates for extreme
quantiles obtained from modelling that ignores covariate effects
will not be the same as those obtained from models incorporating
covariate effects, in general. If models incorporating covariate
effects provide statistically better fits to data than those ignoring
covariate effects, there is good reason to believe that models
incorporating covariate effects will provide better estimates for
extreme quantiles.

In engineering practice, when covariate effects are suspected,
the data sample is often partitioned by covariate and independent
analyses performed per subsample. For instance, directional
modelling may be performed for a set of directional sectors
which are assumed homogeneous with respect to the covariate
(see, e.g., Forristall, 2004); omni-directional quantiles are then
estimates on the basis of all sector models. However, in the
statistics literature, extreme value models with parameters
varying smoothly with one or more covariates are used routinely.
This has the advantage of varying extremal properties with
covariates in a manner consistent with underlying physics. The
current authors have reported the application of directional
modelling to Gulf of Mexico and Northern North Sea hindcast
data (Jonathan and Ewans, 2007; Ewans and Jonathan, 2008).
These articles modelled extremes of storm peak Hs over threshold,
each storm contributing exactly one storm peak observation, itself
associated with a unique storm peak direction. Storm periods
were selected to be sufficiently far apart that storm peak events
could be reasonably assumed to be independent at a given
location. Data from multiple locations were included, each
location contributing exactly one observation for each storm, all
locations assumed to have identical (marginal) extreme value
behaviour. Since marginal distributions per location are certainly
dependent in general, and since modelling both dependency and
marginal behaviour together is technically challenging, we
proceed to model assuming marginal distributions independent,
but then carefully correct estimates for parameter uncertainties
using a block bootstrapping approach (Chavez-Demoulin and
Davison, 2005).

To estimate extreme quantiles, it is necessary to characterise
both the distribution of peaks over threshold and the rate of
occurrence of extremes. For peaks x over threshold u, the form of
the GP distribution F.(x;0) with shape parameter y and scale
parameter o is

" —1/7(0)
Fe(x;0)=1— (1 +%(x - u(é))))
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for all x such that 1+ (y(0)/a(0))(x — u(0))>0. The form of the
unconditional distribution of peaks over threshold is

Fx;0) = (1 — p(0)) + p(O)Fc(x; 0)

where p is the probability of threshold exceedance. Here, each of y,
¢ and p are assumed to be functions of covariates 0 = {0;} which
are estimated directly from the data using maximum likelihood.
Informally, the distribution of the storm peak maximum in some
time period P for covariate values in interval I is

n o0
Fp(x:0 € I) =[] D F4x: 1)) Pr(Na(l;, P) = k)
i=1 k=0
where |, I; is a partition of the domain I of covariate(s) of
interest into small homogeneous intervals, and N,(I;,P) is the
number of occurrences of storm peak events corresponding to
interval I; in period P, assumed to be independently Poisson-
distributed. Thus, in the case of storm direction as a covariate, we
can evaluate extreme quantiles for arbitrary directional sectors,
including the so-called omni-directional extreme quantile.

3. The toy model case studies

We illustrate the importance of directional extreme value
modelling using a series of case studies based on a simple
conceptual model, henceforth referred to as the ‘toy model'.

In the toy model, we observe storm peak Hg events associated
with one of two directional sectors (S1 and S2). Storm peak events
are independent, and events in a given directional sector are
identically GP distributed. Numbers of events occurring per
annum per directional sector are exactly equal and constant in
time. We use the toy model to generate a sample consisting of n
data corresponding to a period Py (years). Our objective is to
estimate the distribution of the 100-year maximum storm peak
event (or characteristics thereof).

For convenience, we refer to the set of GP shape y, scale ¢ and
threshold u parameters by E = (y, o, u). The marginal distributions
of sectors S1 and S2 are characterised by E; and E;, respectively.

Using the toy model we can calculate the characteristics of
extremes from theory. Since the number of occurrences in 100
years, m is known to be m = 100n/Py, (and is not a random
quantity), the distribution of the 100-year maximum event is

F1o0theory®) = F1/2(x) x F3/?(x)

where F; and F, are GP sector distributions for S1 and S2.

The distribution of the 100-year maximum can also be
estimated by simulating multiple realisations of periods of 100
years, recording the maximum observed in each realisation and
constructing an empirical distribution F;ggsjm.

Further, we can generate a sample of data from the toy
model, fit various extreme value models and estimate the
distribution of extreme quantiles of interest. We compare
sample-based estimates of extreme quantiles with those obtained
from theory or directly from simulations. Specifically, we compare
the bias and precision of sample-based estimates for omni-
directional criteria based on either a directional extreme value
model or an extreme value model which ignores directionality
(henceforth the ‘constant model’, since extremal characteristics
are assumed constant with direction) with reality (i.e. theory or
direct simulation).

Using the directional model, the distribution of the 100-year
maximum event is

Fioopir(X)
= ((1 = Py) + D1 Fex | EN)™2((1 — py) + PoFe(x | Ex)™?

where p,, p, are estimated threshold exceedance probabilities for
the respective sectors, and E;, E, are estimated GP parameters.
Using the constant model, the distribution of the 100-year
maximum is

Fioocon(®) = (1 — P) + PFc(x | E))™

where p is the estimated (omni-directional) exceedance prob-
ability and E the estimated GP parameters.

We estimate bias and precision of Figgpi; and Figocon With
respect to Figgrheory OF F1gosim Dy simulation of 1000 realisations of
the complete sample-based estimation. For definiteness and
clarity of discussion, we focus on estimation of the median, 25th
and 75th percentiles of the 100-year maximum event. Inferences
from these case studies are generally applicable to estimation of
omni-directional criteria for directional data, and more widely to
sample-based estimation of extreme quantiles in the presence of
covariate effects.

4. Results

This section presents results for three case studies, and
summarises findings for supporting case studies not reported
fully here. The modelling procedure is explained in more detail for
Case Study 1.

4.1. Case Study 1

We observe a sample of n = 2500 storm peak Hs events in a
period Py =25 years. Exactly 1250 events occur in each of
directional sectors S1 and S2. The sector GP parameters are taken
to be E; =(-0.1,2,4) and E, = (-0.3,4,4). Therefore, extreme
value distributions for sectors S1 and S2 are bounded on the right-
hand side at 24 and 17.33 m, respectively (obtained using the
expression u —¢g/y). These parameter values might correspond,
e.g. to a Northern North Sea environment. The marginal densities
of events per directional sector are illustrated in Fig. 1.

The distribution of the 100-year maximum event can be
calculated from theory and simulation as discussed in Section 3,
using 1000 realisations of samples of 100 years. Resulting
cumulative distribution functions, illustrated in Fig. 2, are in good
agreement. Behaviour of the probability of threshold exceedance
with threshold was monitored and is illustrated in Fig. 3.

We need to assess the quality of fit of the directional GP model
to the data, and estimate an appropriate value of threshold to
adopt. In this simple situation, fitting the directional model
corresponds to fitting sectors 1 and 2 independently using the GP
distribution. We select an appropriate threshold value by
examining the variation of estimated parameters y and ¢ with
threshold u (see, e.g., Embrechts et al., 2003). In the case of y, we
expect the estimate to remain steady as a function of threshold
over a reasonable interval, since theory tells us that varying
threshold does not affect the shape parameter estimate, if the GP
form is appropriate. This is indeed the case from inspection of
Fig. 4. For g, we expect from theory that the estimate is a linear
function of threshold (with gradient y) over a reasonable interval,
if the GP form is appropriate. Again, this appears to be the case
from inspection of Fig. 5. The expected behaviour with threshold
also suggests that the GP model appears reasonable for fitting to
data from individual sectors (but see Case Study 3) and that
estimation of extreme quantile characteristics will be relatively
insensitive to choice of thresholds between 4 and 8 m.

Next we adopt the constant model, fitting the GP distribution
to all data regardless of sector. The variation of parameter
estimates with threshold (Fig. 6) is now inconsistent with
expected behaviour for GP-distributed data. The estimate for y is
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Fig. 1. Theoretical sector densities for Case Study 1, for sectors S1 (black) and S2 (grey).

Fig. 2. Distribution of 100-year maximum from theory and simulation for Case Study 1, for sectors S1 (black), S2 (dark grey) and omni-directionally (light grey).

not constant with threshold, and the estimate for ¢ varies non-
linearly with threshold. We conclude that the GP distribution does
not provide a reliable fit, and that choice of threshold will affect
estimates for extreme quantiles.

To assess which of the constant or directional models is to be
preferred for these data, we further visualise the quality of fit of
the two models in various ways. For example, for a typical sample
realisation of Case Study 1, Fig. 7 shows empirical cumulative
distributions, obtained by simply ordering the sample data,
allocating equal probability mass to each observation to obtain a
distribution. The figure also shows corresponding fitted GP
distributions, for individual sector fits (Lh.s., assuming the
smallest threshold of 4m, since this is consistent with a good
GP fit from Figs. 4 and 5) and the fit to all data (r.h.s., with a
threshold of 6m, chosen as a typical value for which we might
consider fitting the constant model). The quality of fit of the two
models cannot be easily distinguished. However, formal statistical

testing is more informative and is the preferred approach to
model selection. We use the likelihood ratio test (Kalbfleisch,
1985) to compare the adequacy of directional and constant
models for Case Study 1. This test compares the goodness of fit
of the respective models, whilst accounting for the added
flexibility of the directional model. Specifically, the difference of
the log likelihoods of the data, fitted with either model in turn and
corrected for model complexity, is calculated. If the constant
model is adequate, this difference should follow a y? distribution
with degrees of freedom equal to the difference in numbers of
parameters between the directional and constant models (since in
essence the directional model contributes nothing new). If the
constant model is inadequate, the difference of log likelihoods will
be extreme in the y2 distribution. Fig. 8 shows the estimated
probability of rejecting the constant model in favour of the
directional model, as a function of threshold. It is apparent that
the directional model is a significantly better fit to the data than
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Fig. 3. Probability of threshold exceedance for each sector, as a function of threshold, in Case Study 1, for sectors S1 (black) and S2 (grey).

Fig. 4. GP parameter estimates for sector 1, as a function of threshold, in Case Study 1. The dotted line indicates expected behaviour for GP data. Interquartile uncertainty

(dark grey) and maximum and minimum (light grey) also shown.

the constant model for all but the highest thresholds, for which
the sample size is small. We conclude from the statistical
diagnostic tests conducted that the directional model is preferable
to the constant model for these data.

Finally, we use the directional and constant models to estimate
statistical properties of the 100-year maximum event, and
compare estimates obtained with theory (and direct simulation).
For estimation using the directional model, we recommend using
the smallest threshold consistent with a good GP fit (from Figs. 4
and 5) since this corresponds to the largest sample size for model
fitting; however, for clarity in this discussion and fairness of
comparison, we present estimates as a function of threshold. For
the constant model, since the choice of threshold is unclear, we
must examine estimates as a function of threshold. Fig. 9 shows
estimates for the quartiles of the distribution of the 100-year
maximum. The directional model is in excellent agreement with
theory over a range of thresholds, whereas the constant model

estimates vary with threshold. A fortunate choice of threshold
around 9 m would give relatively good results using the constant
model for this return period, but no objective a priori basis exists
for threshold selection. It is clear that the constant model is less
reliable that the directional model for these data, and that the
directional model provides realistic parameter and quantile
estimates over a range of thresholds.

Fig. 10 illustrates the uncertainty in the estimate of the median
100-year maximum in terms of the interquartile range for that
estimate. The widths of uncertainties bands from directional and
constant model are similar.

In this case study, for smaller thresholds, the constant model
overestimates return values for a return period of 100 years. This
bias is due to the fact that the sample data, known to come from a
mixture of sector GP distributions, are fitted assuming them to be
drawn from a GP distribution; this is not generally the case.
Overestimation at 100-year level does not imply overestimation at
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Fig. 5. GP parameter estimates for sector 2, as a function of threshold, in Case Study 1. The dotted line indicates expected behaviour for GP data. Interquartile uncertainty

(dark grey) and maximum and minimum (light grey) also shown.

Fig. 6. GP parameter estimates for constant model, as a function of threshold, in Case Study 1.

other return periods as discussed in Section 6. As threshold varies,
sample proportions from underlying sector distributions vary, as
would return values, consistent with the findings of Carter and
Challenor (1981). For the largest values of threshold, the sample is
composed overwhelmingly of observations from the more
extreme sector, which is GP distributed. We would therefore
expect GP parameter estimates and return values from the
constant model to be relatively unbiased, but with high variance
due to the relatively small sample size available for fitting. In this
case, since shape parameter y is negative in each sector, upper
bounds for sectors S1 and S2 of 4+2/0.1 =24m and 4 +4/0.3 ~
17.3m exist. Thus, if we were able to set the extreme value
threshold at approximately 17.3 m, we would be sure of having
homogeneous GP data. However, we would need a period of
approximately 1200 years to obtain a single observation in this
case. By setting a reduced threshold of approximately 9.6 m, we
obtain a sample of size 250 with approximately 20% of all

observations from sector S1 on average in 25 years (as can be seen
from Fig. 3).

4.2. Case Study 2

In the first case study, we were blessed with a large sample.
Case Study 2 is identical to Case Study 1 except that the number of
occurrences in the period Py = 25 years is reduced from n = 2500
to 250, with exactly 125 from each sector. Smaller samples
increase modelling uncertainty generally, as seen in Fig. 11, which
shows (in comparison with Fig. 8) that only for the smallest
thresholds (less than 6 m) can the inadequacy of the constant
model be reliably detected. Nevertheless, for small thresholds the
directional model is preferred. Plots of parameter estimates with
threshold (not shown) also lead us to doubt the adequacy of the
constant model.
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Fig. 7. Comparison of tails of empirical and fitted cumulative distribution functions, for a typical sample realisation in Case Study 1. Fits to sectors S1 and S2 (black and grey,

respectively, l.h.s.) and to all data (r.h.s.).
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Fig. 8. Probability of rejecting constant model, as a function of threshold, in Case Study 1.

Estimates for quartiles of the 100-year maximum are illu-
strated in Fig. 12 (following the format as Fig. 9). Estimates from
the directional model are more stable with threshold, and
generally more accurate than those obtained using the constant
model. But for the 100-year return period, the difference in the
value of estimates obtained is rather small. The uncertainty of the
median 100-year maximum is shown in Fig. 13.

4.3. Case Study 3

We observe a sample of n = 2500 storm peak Hs events in a
period Py = 25 years, 1250 events in each of directional sectors S1
and S2. The sector GP parameters are taken to be E; = (-0.1,3,4)
and E, = (—0.3,4,6). Extreme values for sectors S1 and S2 are
bounded on the right-hand side at 34 and 18.33 m, respectively. The
marginal densities of events per directional sector are plotted in Fig.

14. Sector exceedance probabilities (from 1000 realisations of the
sample) are given in Fig. 15. The parameter values for E; and E; were
chosen so that domains of sample data for each sector be similar.

To assess model fit, we examine the behaviour of GP parameter
estimates with threshold for fitting to individual sectors and
overall. From Figs. 16-18 it is not at all clear that the directional
model is preferable even at lower thresholds. Parameter estimates
vary with threshold as would be expected for GP distributed data,
over a range of threshold values, for both directional and constant
models.

However, the likelihood ratio test results (Fig. 19) provide clear
evidence that the directional model is preferable to the constant
model at thresholds below 8 m.

Estimates for the quartiles of the 100-year maximum event are
illustrated in Fig. 20, which follows the format as Figs. 9 and 12.
The uncertainty of the median 100-year maximum is illustrated
in Fig. 21.
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Fig. 9. Estimates for quartiles of 100-year maximum, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model estimates with

threshold, for Case Study 1.

Fig. 10. Interquartile uncertainty for median 100-year maximum, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model

estimates with threshold, for Case Study 1.

A number of characteristics of Figs. 20 and 21 is consistent
with observations from Case Studies 1 and 2. Notably, for lower
thresholds in Fig. 20 corresponding to largest sample sizes for
fitting, the directional model is considerably more accurate than
the constant model. At a threshold of 6 m, the directional model
underestimates the true median 100-year value by less than
0.2 m, whereas the constant model underestimates by more than
1.5m. For all thresholds less than 10 m, the directional model is
within 1 m of the truth. The upper (75%) quartile of the 100-year
maximum distribution is also well-estimated by the directional
model. A cautionary note in this case study is the behaviour
of parameter estimates with threshold for fitting the constant in
Fig. 18. The behaviour observed is that which would be expected if
the data fit the GP model well, yet we know this not to be the case.

Statistical testing, the likelihood ratio test, here, should be used
for model selection. Parameter behaviour with threshold is used
primarily to select an appropriate value for threshold.

The poor performance of the constant model in this case can be
explained as follows. Sector S1 (y = —0.1) is more extreme than S2
(y = —0.3). However, by construction, the proportion of observa-
tions in the data sample from sector S2 is higher than from S1
even for the highest thresholds. We know asymptotically that the
proportion of observations from S1 would increase with thresh-
old, eventually to dominate. In this sense, S1 is always under-
represented in the sample. Since the maximum values in the
sample are also approximately equal (again by construction), the
constant model tends to compromise between S1 and S2 at
all thresholds. If data corresponding to a longer period were
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Fig. 11. Probability of rejecting constant model, as a function of threshold, in Case Study 2.

Fig. 12. Estimates for quartiles of 100-year maximum event, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model

estimates are given as a function of threshold, for Case Study 2.

available, the two sectors would be more easily distinguishable at
high thresholds by the constant model. Nevertheless, the direc-
tional model is clearly preferable in this case study.

4.4. Other case studies

In addition to the case studies reported here, a number of other
cases have been examined. Details are not reproduced here, but
are available from the authors. Noteworthy are the following.
When the sectors have identical extreme value parameters, the
likelihood ratio test indicates that the constant model is adequate
for all thresholds. Parameter estimates vary with threshold as
would be expected for GP data for both directional and constant
models. Estimates for distributional characteristics of the
100-year maximum from the directional and constant models

are very similar, but the constant model should be preferred since
it is more parsimonious. When sector distributions are assumed
to be Weibull rather than GP, and fitting is performed using the
Weibull distribution, effects analagous to those reported here are
observed. When Weibull-distributed data are modelled using GP,
bias in extreme quantile estimates due to both model mis-
specification and neglect of directional effects are observed. Only
asymptotically can reasonable estimates be anticipated (see, e.g.,
Elsinghorst et al., 1998).

5. Discussion

The period of data available for extreme value estimation is
usually shorter than the return period of interest. Therefore the
analysis entails extrapolation beyond the domain of measurements.
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Fig. 13. Interquartile uncertainty for median 100-year maximum, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model

estimates given as a function of threshold, for Case Study 2.

Fig. 14. Theoretical sector densities for Case Study 3, for sectors S1 (black) and S2 (grey).

Even after assuming homogeneity and regularity, uncertainties
associated with estimates will be high compared with the usual and
preferred case in statistical modelling corresponding to interpola-
tion between data within the domain of the sample (Anderson,
1990). In practice, extreme events with low rates of occurrence, not
seen during the period of observation, may have an important
influence on return values. If 1000 years of data were available with
which to estimate the distribution of 100-year maximum at a given
location over the past millennium, progress would be relatively
straight forward, even in the presence of directional, seasonal and
possible long-term variation with time. This regrettably is not
usually the case in offshore design.

Extreme value analysis involves modelling the most unusual
events in the sample, rather that the typical. Uncertainties
of extreme values (from measurement or hindcast) are likely
to be different to those of the bulk of the data. The few largest

values in the sample are typically highly influential for estimates
(Davison and Smith, 1990). The model is most sensitive
to the most informative observations. Compounded with limited
sample size, selection of the optimal model form that charac-
terises the observed extreme values is therefore difficult.
Minor differences in model form or parameter estimates, which
would be of little consequence for interpolation within the
domain of the data, can produce material discrepancies in
return values, especially at long return periods. To alleviate
sample size problems, it is appealing to combine data from
different sources, e.g. from different locations in the same
neighbourhood, anticipated to have similar extreme value
behaviour, including covariates as necessary to explain differences
in behaviour. This increases sample size at the possible expense
of introducing dependency which must be treated carefully,
especially with respect to estimation of parameter and extreme
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Fig. 15. Probability of threshold exceedance for each sector, as a function of threshold, in Case Study 3, for sectors S1 (black) and S2 (grey).

Fig. 16. GP parameter estimates for sector 1, as a function of threshold, in Case Study 3. The dotted line indicates expected behaviour for GP data.

quantile uncertainty. Block bootstrapping in an important tool in
this respect.

Extreme value theory shows that, asymptotically, distributions
of threshold exceedances converge to the GP distribution given a
sufficiently high threshold, provided the limit exists. Fitting
samples of extreme values using the GP distribution is therefore
only defensible given that the threshold used is large enough.
Using diagnostic tests, such as the mean residual life plot (e.g.
Embrechts et al., 2003), comparing the variability of parameter
estimates with expected behaviour as threshold is varied and
confirming the stability of extreme quantile estimates with
threshold, the plausibility of the GP model form can be
ascertained (e.g. Coles, 2001). However, there is no direct evidence
that the chosen threshold is sufficiently high that the GP
distribution is an adequate model. In general, it would be
advantageous to have sufficient understanding of the underlying
physics to suggest an appropriate model selection, so that as much

of the sample as possible (not just the largest values) would aid
parameter estimation.

The GP distribution is the limiting form for threshold
exceedances for all distributions. The shape parameter y deter-
mines tail behaviour. When 7 is negative, the domain of extreme
values is bounded on the right-hand side. Otherwise, the
distribution is unbounded on the right. Many practitioners in
engineering disciplines adopt specific model forms to fit extreme
values, notably variants of the Weibull distribution. There is often
little evidence in the data to distinguish between quality of fit for
different model forms. Yet asymptotically, the Weibull distribu-
tion is of the Gumbel type (with y = 0); that is, fitting using the
Weibull distribution implicitly constrains the solution to be
unbounded on the right-hand side. Modelling using GP avoids
this constraint. For this reason, fitting using Weibull and GP are
expected to given different estimates for return values especially
at long return periods.
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Fig. 17. GP parameter estimates for sector 2, as a function of threshold, in Case Study 3. The dotted line indicates expected behaviour for GP data.

Fig. 18. GP parameter estimates for constant model, as a function of threshold, in Case Study 3.

An important aim in extreme value analysis is the estimation
of an extreme quantile corresponding to a particular return
period, P, or the maximum value observed in P years. Typically, a
single value is reported, such as the value of Hs which is exceeded
with probability 1/P per annum. Yet the P-year maximum is itself
a random variable. Given perfect model specification and para-
meter estimation, the P-year maximum event will follow a
skewed distribution with long right-hand tail. Model and para-
meter uncertainty broaden this distribution. Typically, the value
reported is the mode of this distribution, which because of
skewness, is less than both the expected and median values.
Further, the ratio of the 95th percentile of the distribution of the
P-year maximum to its mode also varies systematically with the
shape parameter of the GP used. This ratio is greater in Gulf of
Mexico conditions (y near —0.1) than in the Northern North Sea
conditions (y = —0.3). That is, for the same value of most probable
100-year Hs, we expect more exceptionally large values in the Gulf
than in the Northern North Sea (Jonathan and Ewans, 2008).

A typical storm is not uni-directional, generating peak over
threshold events in a number of directions, not just the storm
peak direction. In estimating directional design criteria, we must
also account for the influence of storms over their full range of sea
states and wave directions, e.g. using directional dissipation
(Jonathan and Ewans, 2007).

The requirement for modelling of covariate effects must be
considered in light of all these issues. When physical considera-
tions such as fetch variability with direction, seasonal cycles of
storm severity, variation of water depth or climate change is
suspected to be present, inclusion of the corresponding covariates
is likely to be important for good model fit. Conversely, it is
important also not to ‘overfit’ by including covariate effects which
are not supported by the data. Statistical tests can be used to
select formally between models with or without covariate terms
based on their goodness of fit to the sample. Techniques such as
cross-validation offer one approach to ensuring parsimony in
terms of predictive performance. The behaviour of parameter and



P. Jonathan et al. / Ocean Engineering 35 (2008) 1211-1225 1223

Probability of rejecting constant model

| RN

0.8 \

N

0.6

Probability

0.4

0.2

10 12 14 16

Threshold, u (m)

Fig. 19. Probability of rejecting constant model, as a function of threshold, in Case Study 3.

Fig. 20. Estimates for quartiles of 100-year maximum, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model estimates are

given as a function of threshold, for Case Study 3.

quantile estimates with threshold should be examined and
compared with expectation from theory and previous application.
The stability of quantile estimates for directional sectors with
respect to threshold and small changes to sector boundary
specifications should also be examined. As illustrated in this
work, neglect of covariates can lead to biased estimates of
extreme quantiles. The extent of any bias cannot be anticipated
a priori in general. Moreover, the relative size and direction of
biases due to neglect of covariate(s) compared to other sources
(e.g. mis-specification of threshold, of model form, outliers,
sample size) is also difficult to estimate before the analysis is
performed. Nevertheless, failure to model covariate effects
adequately when there is evidence for their presence will likely
compound errors.

In the current work, with extremes GP-distributed in each of
sectors S1 and S2, an arbitrary extreme event is distributed as a

mixture of two GP distributions. For a sufficiently high threshold,
threshold exceedances will follow (at least approximately) the GP
distribution corresponding to the sector with highest value for 7.
When the sample is sufficiently large (in Case Study 1, e.g.), this
threshold is prohibitively high, corresponding to a very long
return period. For smaller threshold values, only the directional
model can adequately describe the sample and provide realistic
quantile estimates. We have concentrated on estimation of the
properties of the 100-year maximum, but longer return periods
are sometimes also of interest. Fig. 22 gives estimates for the
median of the P-year maximum for values of P between a hundred
and a million years, for Case Study 1. The figures illustrate that
directional model estimates (using the smallest value of threshold
available consistent with GP) agree reasonably will theory,
whereas estimates from the constant model (for thresholds of
6,7,...,12m) are generally inaccurate.
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Fig. 21. Interquartile uncertainty for median 100-year maximum, from theory (dotted), directional (dashed) and constant (solid) models. Directional and constant model

estimates given as a function of threshold, for Case Study 3.
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Fig. 22. Median return values for different return periods, from theory (solid black), directional model fitting (dashed black) and constant model fitting for different
thresholds (grey), for Case Study 1. For constant model, curves (from top to bottom) correspond to thresholds of 6,7,.. ., 11m.

In the case studies, we have chosen to fit either the directional
or constant models, using the likelihood ratio test for model
selection. We might enhance the set of candidate models further,
since there may be models of intermediate complexity which are
more efficient. For example, we might consider models for which
the extreme value shape is assumed constant with direction with
scale allowed to vary (or vice versa).

6. Conclusions and recommendations

We have demonstrated that model-fitting to a heterogenous
sample ignoring covariate effects leads to biased estimates of
return values, whereas models incorporating covariate effects

provide relatively unbiased estimates. For data that exhibit
directional effects, we show that a directional extreme value
model generally explains observed variation significantly better
than a model which ignores directionality, and that omni-
directional criteria developed from a directional model are
different from those generated when directionality is not
accounted for. Finally we show that omni-directional criteria
derived from a directional model are more accurate and should be
preferred in general over those based on models which ignore
directional effects.

We recommend the use of directional extreme value models
for estimation of both directional and omni-directional design
criteria in future, when good directional data are available. When
the effects of other covariates (e.g. time or space) are suspected,



P. Jonathan et al. / Ocean Engineering 35 (2008) 1211-1225 1225

we similarly recommend the use of extreme value models which
adequately capture sources of covariate variability for all design
analysis.
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Appendix A. Conditional and unconditional distribution to
estimate extreme quantiles

Assume n independent storm events occurring in period Py.
Extremal characteristics vary with covariate 0. Partition the
domain of ¢ into K intervals {I,}¥ ; such that the number of
occurrences in Iy is ny (so that 275:1 n, = n). We are interested in
the distribution of the maximum storm peak event X,.x for period
P, P> Py, given the distribution of storm peaks X over threshold u;
in each of the K covariate intervals. We show informally that the
distribution of Xpn.x is obtained equivalently from either the
conditional or unconditional distribution of storm peak.

For any interval, the unconditional distribution function of
storm peak X can be written

PrX<x|0 € I)
=PrX<ul|0 el
+PrX>u|0 e ) PriX<x|X>u|0 € l)
= (1 — o) + oFr(x)
=1—o(1 = Fa(x))

where o, is the probability of exceedance of threshold u, for
interval I, and Fq(x) is the conditional distribution of X given
X>uy in I.

In period P, the distribution Fx,, of the maximum storm peak
Xmax 1S given by

K oo
Fxou®) = [ D PrX<x| M = j) Pr(Mjc = j)

k=1j=0
where M, is the number of storms in interval I, in period P. In
interval I, we expect to observe my = (P/Po)n, peaks over
threshold u;, with probability «, in P years. Therefore we expect
to observe (unconditionally) my /o, storm peaks in the same
period (so that the expected number of exceedances of the
threshold is (my /o), = my). Assuming the number of storms M
to be Poisson-distributed with expectation my/«, per interval I,
we have

K oo m, j 1
Fxpo (%) = H Z(] — ox(1 = Fee(x))Y <—<) '_!e—mk/(lk

k=1 j=0 %/ J

K
- H e~ Mk(1=Fa ()
k=1

Conversely, we calculate the distribution Fy,__ of the maximum
storm peak in period P using the conditional distribution F¢, of
storm peaks over threshold directly

K oo
Yo 0 = [[ D PrX<x|X>u | Ny = j) Pr(Ny = j)
k=1 j=0

where N, is the number of storm peaks over threshold u; in
interval I, in period P. Assuming N, to be Poisson-distributed with
expectation my, we have

K o ) ) 1
o @ = T D_(Fa) )myy e

k=1 j=0
K
— H e~ M(1-Fe (%)
k=1

The expressions for Fx, and Fyx__ are identical regardless of
functional form F.
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