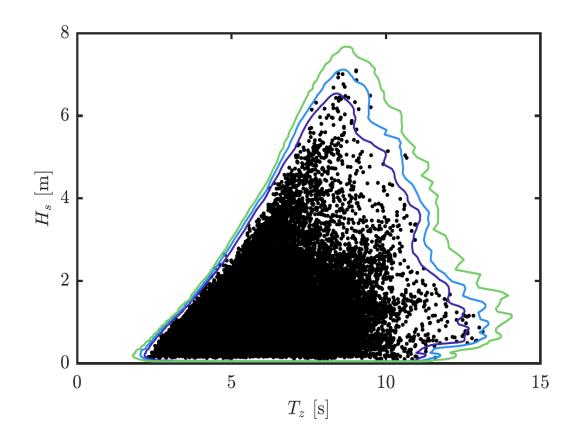
Estimation of environmental contours using a block resampling method

OMAE2020-18308

OMAE Virtual Conference: 3 – 7 August 2020

Ed Mackay University of Exeter, UK Philip Jonathan Lancaster University, UK Shell Research Ltd, UK

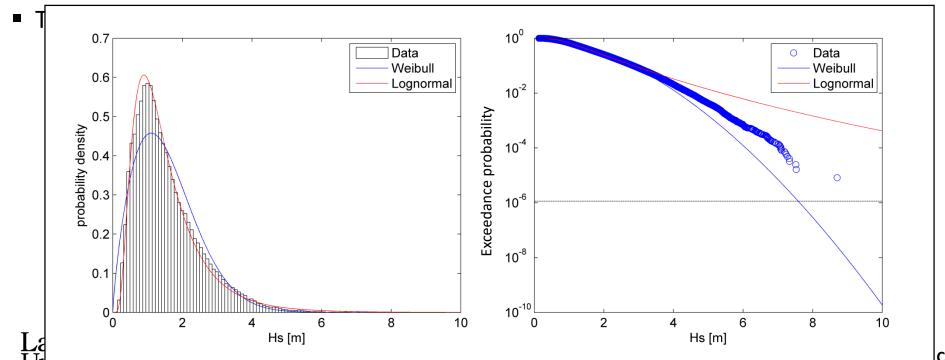


Overview

- Motivation and assumptions for block resampling method
- Application of method
 - Significant wave height and zero-crossing period
 - Significant wave height and wind speed
- Conclusions

Motivation

- Common approach for deriving environmental contours is to fit a global model to all observations
- Several disadvantages to this approach
 - Fit to all observations doesn't guarantee good fit to tail



Conference on Ocean,

Offshore & Arctic Engineering

Motivation

- Common approach for deriving environmental contours is to fit a global model to all observations
- Several disadvantages to this approach
 - Fit to all observations doesn't guarantee good fit to tail
 - This is the region we are most interested in
 - Does not account for serial correlation in data
 - Leads to positive bias in estimates of occurrence of extreme conditions

Motivation

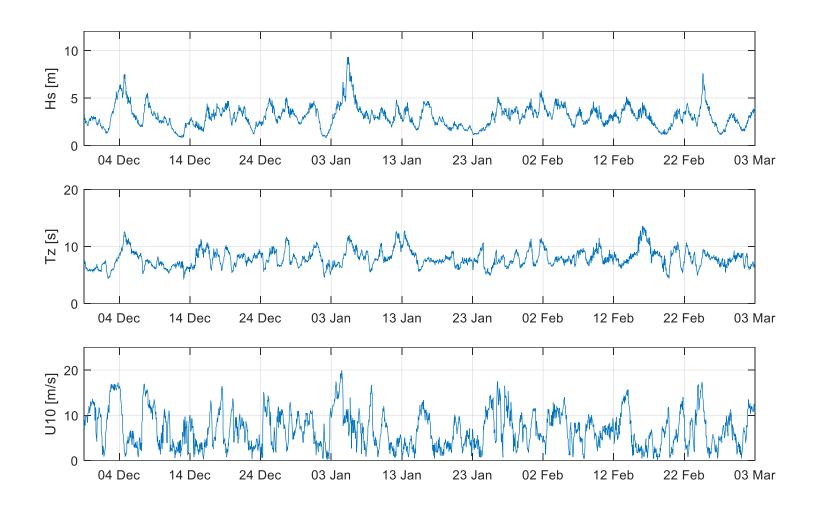
- Common approach for deriving environmental contours is to fit a global model to all observations
- Several disadvantages to this approach
 - Fit to all observations doesn't guarantee good fit to tail
 - This is the region we are most interested in
 - Does not account for serial correlation in data
 - Leads to positive bias in estimates of occurrence of extreme conditions
 - Often require prior assumptions about dependence structure between variables
 - Many datasets exhibit complex dependence structures

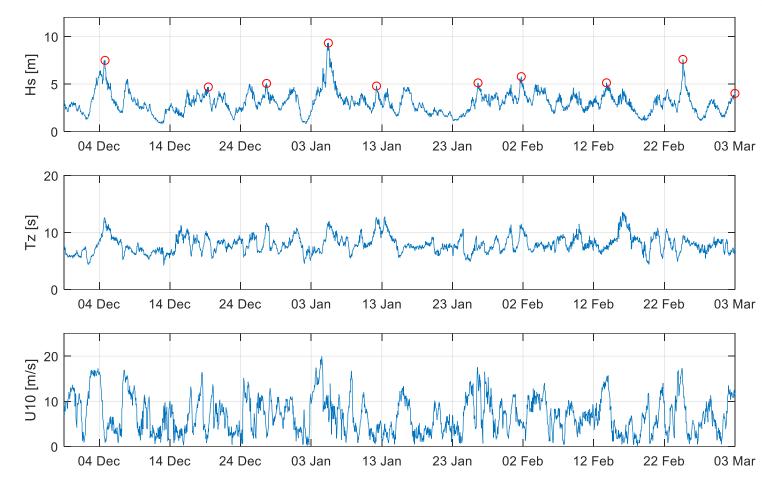
Block resampling method

- 1. Time series divided into non-overlapping blocks
- 2. Models fit to block-peak variables
- 3. Joint distribution of all data recovered by:
 - a) Simulation of peak variables under fitted model
 - b) Resampling measured blocks with "similar" peak values
 - c) Rescaling measured blocks to match simulated peak values

Advantages

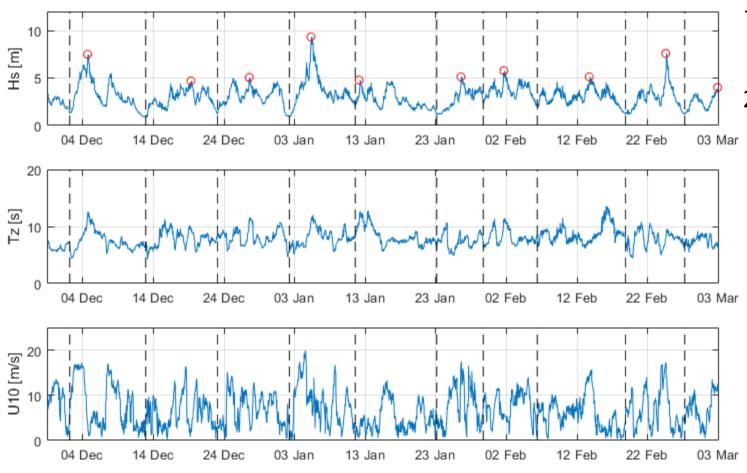
- Better justification for asymptotic models
- Creates time series outputs for analysis of long term extreme response
- Short-term dependence structure resampled rather than modelled explicitly



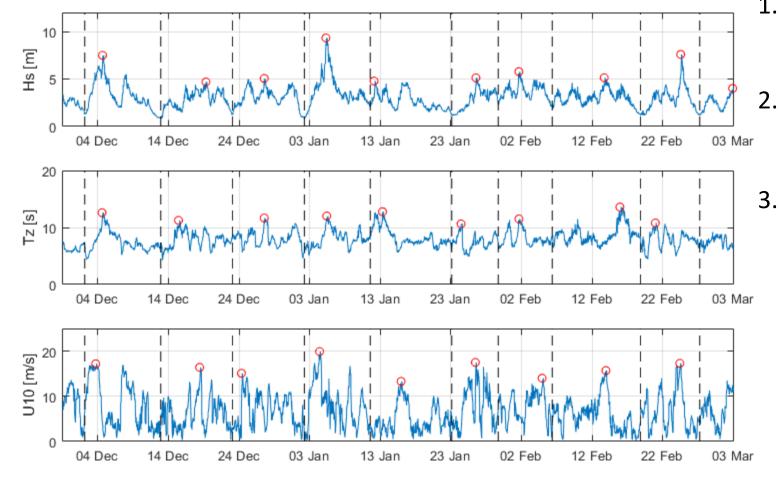


1. Identify peaks in one variable

Defined as local maxima separated by min 5 days

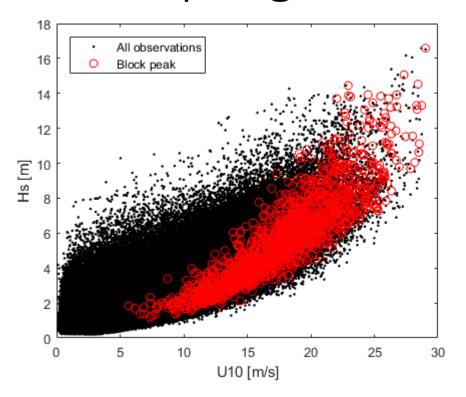


- 1. Identify peaks in one variable
 - Defined as local maxima separated by min 5 days
 - Define dividing points of blocks as times of min Hs between adjacent peaks

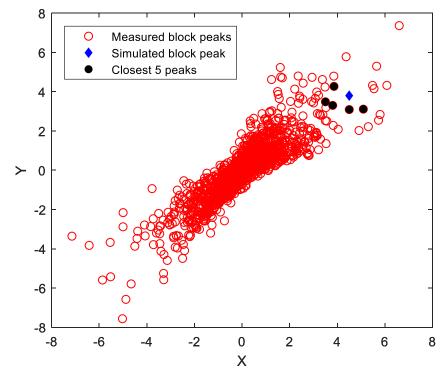


- 1. Identify peaks in one variable
 - Defined as local maxima separated by min 5 days
 - Define dividing points of blocks as times of min Hs between adjacent peaks
 - Find peaks of other variables within each block
 - Peaks within blocks need not be concurrent

Resampling of measured blocks



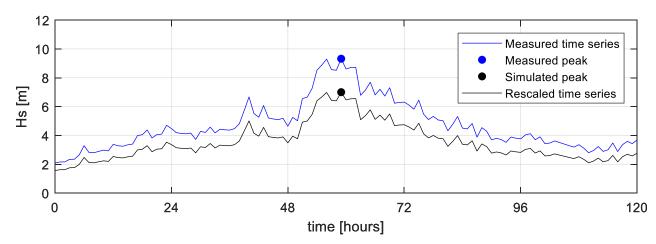
3) Transform to standard Laplace margins

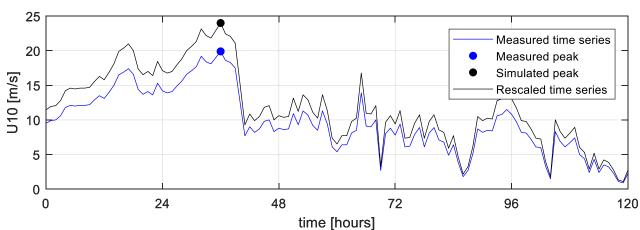


- 1) Find block-peak values
- 2) Fit marginal models to peaks

- 4) Fit joint model
- 5) Simulate from joint model
- 6) Identify n blocks with closest peaks (Euclidean distance on Laplace margins)
- 7) Select one of *n* closest blocks at random
- 8) Scale block so that peak values match

Rescaling of measured blocks





 Blocks rescaled by ratio of simulated to measured peaks:

$$H_{s,rescaled} = \frac{H_{s,sim}^{peak}}{H_{s,meas}^{peak}} H_{s,meas}$$

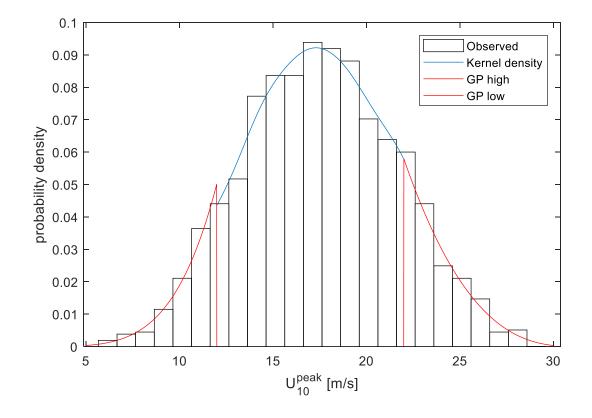
$$U_{10,rescaled} = \frac{U_{10,sim}^{peak}}{U_{10,meas}^{peak}} U_{10,meas}$$

Block resampling: Key assumptions

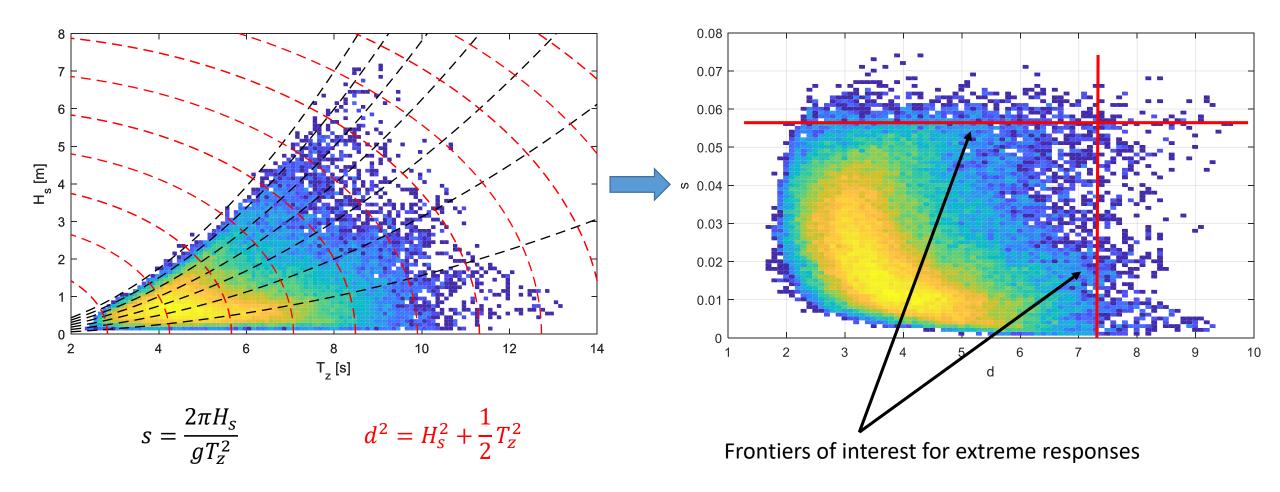
- Multivariate time series can be decomposed into non-overlapping blocks, where block-peak values are independent
- Peak values of each variable not required to coincide in time
 - blocks are sufficiently long that peaks in adjacent blocks are independent
 - blocks are sufficiently short that peaks within blocks are correlated
- Rescaling measured blocks relative to peak values gives an equally realistic storm history, provided the peak values are not changed too much

Marginal models

Kernel density with GP tails



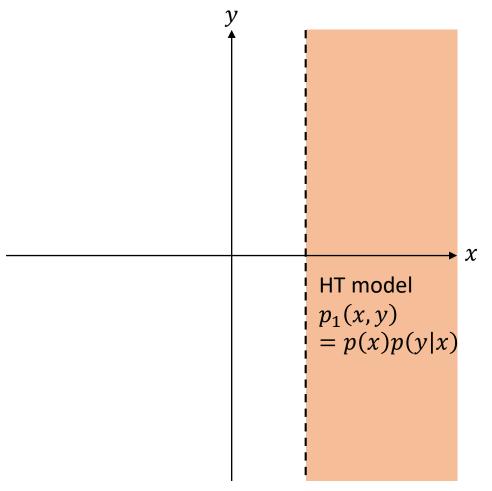
Joint models – example for Hs and Tz



Dataset A from [1]

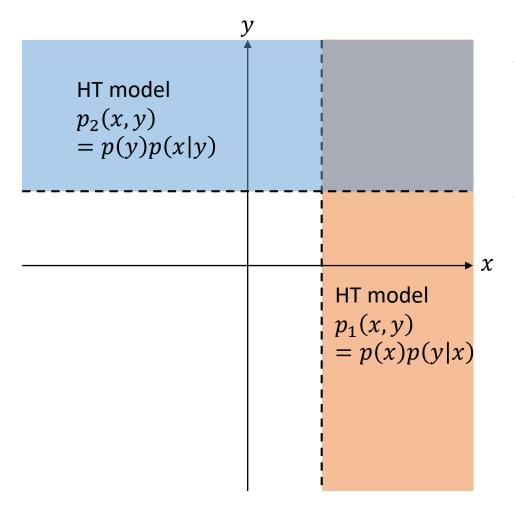
[1] Haselsteiner et al. "A benchmarking exercise on estimating extreme environmental conditions". OMAE2019–96523.

Joint modelling approach



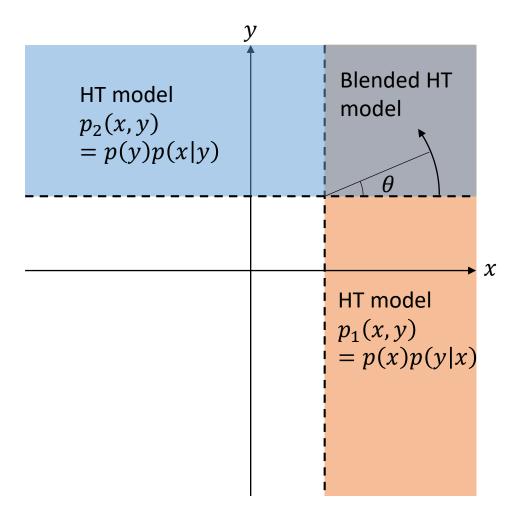
 Heffernan & Tawn (2004) model used to describe distribution of y conditional on extreme value of x

Heffernan-Tawn model



- Heffernan & Tawn (2004) model used to describe distribution of y conditional on extreme value of x
- HT model also used for x given y

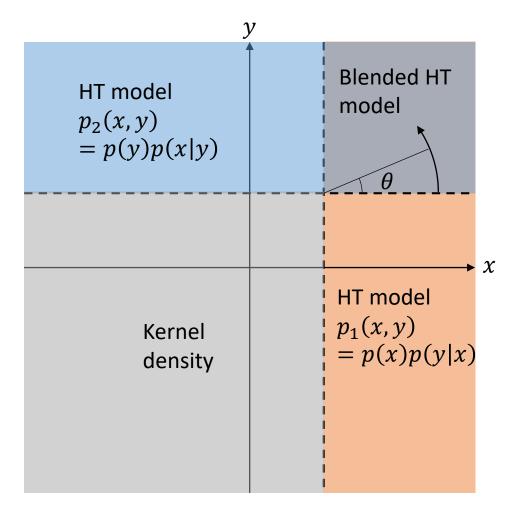
Heffernan-Tawn model



- Heffernan & Tawn (2004) model used to describe distribution of y conditional on extreme value of x
- HT model also used for x given y
- HT models blended in overlapping region:

$$p(x,y) = \left(1 - \frac{2\theta}{\pi}\right)p_1(x,y) + \frac{2\theta}{\pi}p_2(x,y)$$

Heffernan-Tawn model

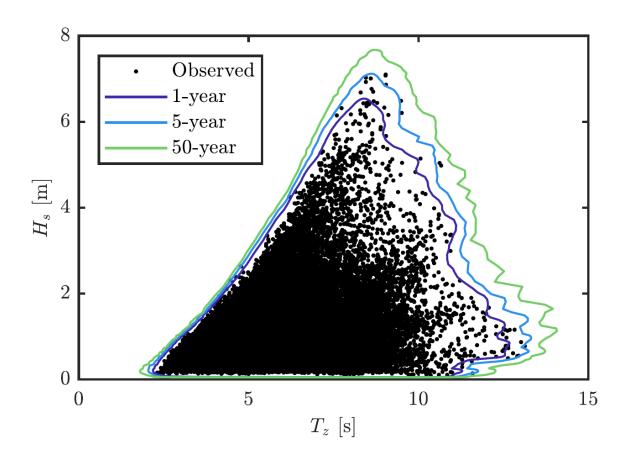


- Heffernan & Tawn (2004) model used to describe distribution of y conditional on extreme value of x
- HT model also used for x given y
- HT models blended in overlapping region:

$$p(x,y) = \left(1 - \frac{2\theta}{\pi}\right) p_1(x,y) + \frac{2\theta}{\pi} p_2(x,y)$$

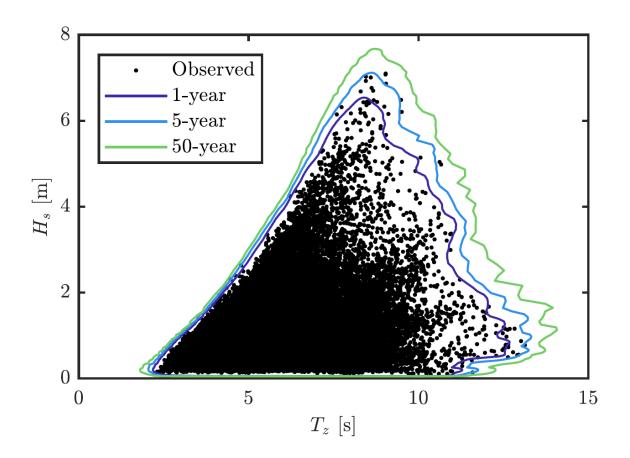
 Kernel density model used for non-extreme regions

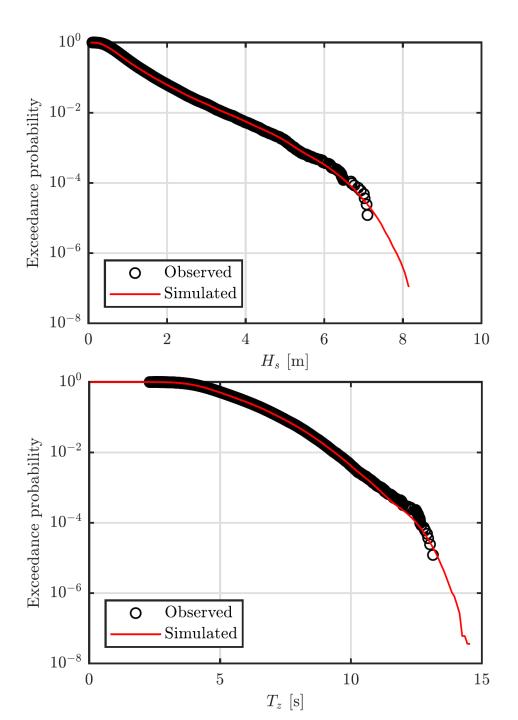
Example contours



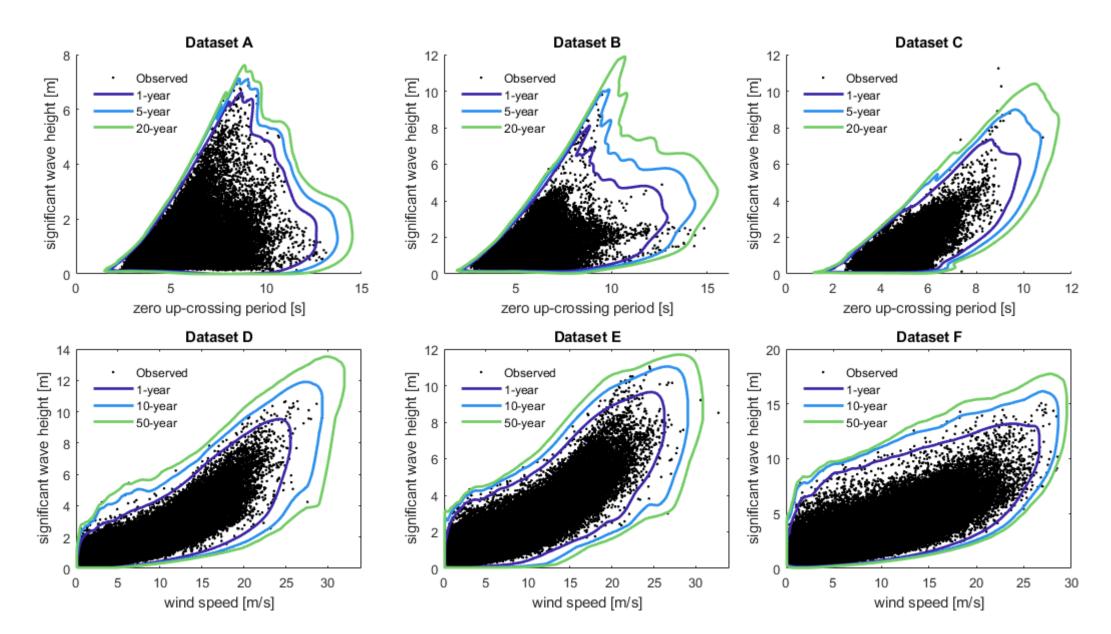
- Blocks resampled from 10 closest blocks
- 1000 years of simulated data
- IFORM contours for 1, 5 and 50 years
- Note: IFORM not uniquely defined
 - Rosenblatt transformation for $T_Z | H_S$ gives different contours to transformation of $H_S | T_Z$
 - See [2] for details

Example contours





Other results for contour benchmarking exercise



Conclusions

- Block resampling approach is capable of accurately reproducing both marginal and joint extremal characteristics of observed data
- Time series outputs preserves 'clustering' properties of extremes
- Future work:
 - Resampling method without the need for pre-defining blocks
 - Modelling of joint distribution without the need for multiple blended models

Acknowledgement

This work was funded under was funded under the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/R007519/1 and as part of the Tidal Stream Industry Energiser Project (TIGER), which has received funding from the European Union's INTERREG V A France (Channel) England Research and Innovation Programme, which is co-financed by the European Regional Development Fund (ERDF).

