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Summary: We describe a model for the conditional dependence of a spatial process measured at one or more

remote locations given extreme values of the process at a conditioning location, motivated by the conditional

extremes methodology of Heffernan and Tawn. Compared to alternative descriptions in terms of max-stable

spatial processes, the model is advantageous since it is conceptually straightforward, and admits different

forms of extremal dependence (including asymptotic dependence and asymptotic independence). We use the

model within a Bayesian framework to estimate the extremal dependence of ocean storm severity (quantified

using significant wave height, HS) for locations on spatial transects with approximate east-west (E-W) and

north-south (N-S) orientations in the northern North Sea (NNS) and central North Sea (CNS). For HS on

standard Laplace marginal scale, the conditional extremes “linear slope” parameter α decays approximately

exponentially with distance for all transects. Further, the decay of mean dependence with distance is found

to be faster in CNS than NNS. The persistence of mean dependence is greatest for the E-W transect in NNS,

potentially since this transect is approximately aligned with the direction of propagation of the most severe

storms in the region.
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1. INTRODUCTION

Quantifying extreme ocean environments is important for safe and reliable construction and

operation of offshore and coastal infrastructure. Extreme value analysis provides a framework

within which the marginal and dependence characteristics of extreme ocean environments

can be estimated, and joint inferences corresponding to very long periods of observation

made in the presence of non-stationarity with respect to covariates.

The spatial structure of ocean surface roughness within a storm is of particular concern when

inferences are based on observations from multiple locations in a neighbourhood. For a given

ocean basin, when the distance between two locations is small relative to the spatial extent

of a storm low pressure field, it is reasonable to expect that large values of ocean surface

roughness (for a period of time of the order of an hour, quantified in terms of significant

wave height HS) at the two locations will be dependent. Moreover, the extent of this spatial

dependence will potentially itself be non-stationary with respect to covariates, such as

storm direction and season. A reasonable statistical description of HS on a neighbourhood

of locations should therefore admit appropriately flexible descriptions of extremal spatial

dependence. Incorrect specification or estimation of the dependence structure can lead to

misleading joint predictions of HS on the neighbourhood. We note a number recent articles

on spatial extremes with at least some synoptic content, including Davison et al. (2012),

Reich and Shaby (2012), Ribatet (2013), Huser and Wadsworth ((2019 to appear) and Tawn

et al. (2018).

A number of recent studies explore the extremal spatial dependence of HS. For example,

Kereszturi et al. (2016) assesses the extremal dependence of North Sea storm severity

using the summary statistics χ and χ̄ (or equivalently η, Coles et al. 1999), outlined in

Section 3. Estimates for these summary statistics were used to categorise observed extremal

dependence as either asymptotic dependence (AD, suggesting that extreme events tend to
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occur simultaneously) or asymptotic independence (AI, suggesting that extreme events are

unlikely to occur together); further discussion of these concepts is given in Section 3.1. In

Kereszturi et al. (2016), it was found that, in most cases considered, asymptotic independence

seemed to be the more appropriate assumption, compared to the assumption of asymptotic

dependence. Kereszturi (2016) and Ross et al. (2017a) extend this assessment to include the

estimation of a number of max-stable process (MSP) and inverted MSP models (Wadsworth

and Tawn, 2012), including the so-called Smith (Smith, 1990), Schlather (Schlather, 2002)

and Brown-Resnick (Brown and Resnick, 1977) models, and corresponding models for the

inverted processes. For all models considered there is evidence that the extremal dependence

of HS at two locations varies with the distance between the locations, and their relative

orientation.

By construction, MSP models considered in Kereszturi (2016) and Ross et al. (2017a) exhibit

AD exclusively, whereas inverted MSP models only exhibit AI. In general, we do not know

a priori which form of extremal dependence is more appropriate: a decision concerning the

form of extremal dependence present in the sample must therefore be made before parameter

estimation; this is less than ideal, although estimation of χ and χ̄ can aid this choice.

We note alternative AD models including those of Reich and Shaby (2012), Ferreira and

de Haan (2014), Rootzen et al. (2018), Kiriliouk et al. (2018 to appear). A number of more

sophisticated hybrid models have been proposed (e.g. Wadsworth and Tawn 2012, Wadsworth

et al. 2017, Huser and Wadsworth (2019 to appear) spanning dependence classes, but these

tend to be rather computationally challenging to estimate in practice.

The conditional extremes model of Heffernan and Tawn (2004) provides an alternative

approach to characterising extremal spatial dependence admitting both AI and AD. The

conditional extremes model also allows the incorporation of covariate effects (e.g. Jonathan

et al. 2014). In the current work, we propose an extension of the conditional extremes method

to a spatial setting, known as the spatial conditional extremes (SCE) model. SCE provides a
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framework to quantify the extreme marginal and dependence structure of HS for locations in

a neighbourhood, including the behaviour of extremal dependence of HS at different locations

as a function of the relative displacements of locations. Model estimation can be achieved

using a relatively straightforward Markov chain Monte Carlo (MCMC) scheme, and unlike

for MSP models, does not require composite likelihood techniques for parameter estimation

and hence does not incur parameter bias, as detailed in Tawn et al. (2018) and Wadsworth

and Tawn (2018).

The layout of the article is as follows. In Section 2, we present motivating applications

involving samples of HS on spatial neighbourhoods in the northern and central North Sea.

Section 3 outlines the spatial conditional extremes model. Parameter estimation is performed

using Bayesian inference as described in Section 4; details of parameter constraints from Keef

et al. (2013a), and the Metropolis-within-Gibbs sampling scheme, are given in the Appendix.

Results of the application of the SCE model to the north-south transect of the northern North

Sea sample are given in Section 5, with corresponding results for the east-west transect (for

the northern North Sea), and north-south and east-west transects for the central North Sea

reported in Section 6. Section 7 provides discussion and conclusions.

2. MOTIVATING APPLICATION

We consider hindcast data for storm peak significant wave height (henceforth HS for brevity)

from two neighbourhoods, one in the northern North Sea (NNS) and one in the central North

Sea (CNS), as illustrated in Figure 1. In each neighbourhood, values for HS are available on

north-south (N-S) and east-west (E-W) transects intersecting at a central location.

[Figure 1 about here.]

The NNS sample corresponds to winter storms (occurring in winter months October-March)
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from the NEXTRA hindcast (Oceanweather 2002) for 20 locations on the two transects.

Storm intervals for a total of 1680 storms during the period 1 Oct 1964 to 31 Mar 1995

were isolated from up- and down-crossings of a sea state significant wave height threshold

for the central location, using the procedure outlined in Ewans and Jonathan (2008). Storm

peak significant wave height for each storm interval at each location provided a sample

of 1680× 20 observations for further analysis. For each storm-location combination, the

direction (from which waves emanate, measured clockwise from North) at the time of the

storm peak, referred to as the storm direction, was also retained. The spatial extremal

characteristics of this sample have been examined previously in Ross et al. (2017a); further

discussion and illustrations of the data are available there.

The CNS sample corresponds to hindcast storm peak events (occurring at any time of year)

for a period of 37 years from 10 January 1979 to 30 December 2015 for 21 locations on

the two transects. The hindcast uses CFSR wind fields (Saha et al. 2014) and a MIKE21

spectral wave simulator model (Sorensen et al. 2005) to generate storm time-series at each

location. Storm periods were again identified as exceedances of a threshold non-stationary

with respect to season and direction, using the procedure of Ewans and Jonathan (2008) for

the central location. In this way, a total of 3104 storm events were isolated per location for

further analysis.

As will be explained further in Section 3, the SCE model is most conveniently considered

for data with marginal standard Laplace distributions. For simplicity, we therefore choose to

transform the NNS and CNS samples to standard Laplace scale prior to spatial conditional

extremes analysis, as suggested by Keef et al. (2013b), for example. This is achieved by

estimating non-stationary marginal models (directional for NNS and directional-seasonal for

CNS), following the approach of Ross et al. (2017a) and Ross et al. (2017b), independently

per location. Transformed data then follow a standard Laplace distribution for each location.

Figure 1 illustrates that the inter-location spacing for the NNS hindcast is considerably
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larger than for the CNS hindcast. For this reason, it is important we compare the variation

of extremal spatial dependence between locations explicitly as a function of physical distance

(here in kilometres, km). Scatter plots of Laplace-scale storm peak HS for pairs of locations

separated by distances of 43.0, 171.8 and 300.7 km along the NNS north-south (NNS:N-S)

transect, coloured red in Figure 1, are shown by the black points in Figure 4 (see Section 5.1).

3. SPATIAL CONDITIONAL EXTREMES

3.1. Characterising extremal dependence

Key concepts in assessing extremal dependence are the notions of asymptotic dependence

(AD) and asymptotic independence (AI). Typically, these are assessed through calculating

two quantities, χ and χ̄ introduced by Coles et al. (1999). For bivariate data (X, Y ) with

common margins, the quantity χ is calculated as

χ = lim
u→uF

P(Y > u|X > u),

where uF is the upper endpoint of the common marginal distribution F of the random

variables. Then χ̄ is defined by Coles et al. (1999) as χ̄ = 2η − 1. Here, η, known as the

coefficient of tail dependence, is defined by Ledford and Tawn (1996) from the asymptotic

approximation, as z → uF ,

P(X > z, Y > z) ∼ L

(
1

P(X > z)

)[
P(X > z)1/η

]
,

where L(w) is a slowly varying function, so that L(tw)/L(w)→ 1 as w →∞ for t > 0. Coles

et al. (1999) provide details on how to calculate estimates for χ and χ̄. Then χ > 0 defines

the extent of AD present, whereas χ = 0 suggests the variables exhibit AI. In the latter

case, χ measures the extent of AI present. Tawn et al. (2018) present a spatial equivalent
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for these measures. Crucially, the spatial characteristics under these two limiting extremal

behaviour types are very different; under AD, two (or more) extreme events may occur at

separate sites simultaneously, whilst under AI this is not the case. Realistically, a spatial field

is likely to exhibit a mixture of these behaviours: at short inter-location distance, asymptotic

dependence may prevail; for sites a large distance apart, asymptotic independence is more

likely, leading to independence at very large distances. The SCE model accommodates both

these possibilities.

3.2. The conditional extremes model of Heffernan and Tawn (2004)

In its simplest form, for a sample from a pair (X, Y ) of random variables with Laplace

marginal distributions, for x larger than some suitable threshold u, the model proposed by

Heffernan and Tawn (2004) is

Y |{X = x} = a(x) + b(x)Z, (1)

where Z is a residual process with typically unknown distribution function G. A particular

form that may be utilised when working with Laplace margins is to set a(x) = αx and

β(x) = xβ, for −1 ≤ α ≤ 1 and 0 ≤ β ≤ 1. This form of the conditional extremes model is

used as the basis for the rest of this paper. We also assume that the unknown residual

distribution G is Gaussian.

This model may be extended to a general multivariate case. Let Z be a multivariate Gaussian

distribution with marginal distributions N(µj, σ
2
j ) (j = 0, . . . , n), for a set of spatial random

variables (X0, . . . , Xn) with standard Laplace margins. Then we have a multivariate model

given by

(X1, . . . , Xn)|{X0 = x} ∼ MVN
(
αx+ µxβ,BΣBT

)
, (2)
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where x > u, α = (α1, . . . , αn)T , β = (β1, . . . , βn)T , µ = (µ1, . . . , µn)T , and B =

diag(xβ1 , xβ2 , . . . , xβn), and Σ is the variance-covariance matrix of the residuals Z. In

expression (2), vector operations are carried out component-wise.

We then have marginal models for j = 1, . . . , n given by

Xj | {X0 = x} ∼ N
(
αjx+ µjx

βj , σ2
jx

2βj
)
. (3)

Equation (2) corresponds to the multivariate extension of Equation (1), in which information

about parameters θ = {αi, βi, µi, σi}ni=1 can be shared between random variables. The

increased number of parameters, as compared to Equation (1), means that this model is

more computationally-challenging to estimate.

3.3. The spatial conditional extremes (SCE) model

The SCE model is a spatial extension of the conditional extremes model, following the

work of Tawn et al. (2018) and Wadsworth and Tawn (2018). First suppose that X(·), the

process of interest, is stationary and isotropic and has Laplace marginal distributions. Also

suppose that we have sampling locations s, s0 ∈ S, where S is some spatial domain. Then

for h = |s− s0|, the distance or lag between two sites, we have

X(s) | {X(s0) > u} = α(h)X(s0) +X(s0)
β(h)Z(s− s0). (4)

For a set of fixed spatial locations, Equation 2 and Equation 4 are equivalent if we assume

that Z is a residual Gaussian process with mean function µ(h) and covariance incorporating

σ(h), as described in Equations (5) and (8). Of key importance is that different combinations

of parameter values correspond to different types of spatial dependence. We have AD at all

distances h when α(h) = 1 and β(h) = 0 for all h ≥ 0, while a mixture of limiting dependence
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classes is observed if (α(h), β(h)) = (1, 0) for h ≤ hAD but also α(h) < 1 for h > hAD, for

some distance hAD. The process exhibits AD up to distance hAD and AI thereafter. Hence,

the proposed framework is able to estimate extremal dependence flexibly.

3.4. Constraints

For a given h, we constrain the possible values of pairs of parameters (α(h), β(h)) as suggested

by Keef et al. (2013a), as outlined in the Appendix. The motivation for this constraint is

to impose an ordering of conditional distributions associated with asymptotic independence

(α(h) < 1) and asymptotic positive dependence (α(h) = 1, β(h) = 0). In practice, this means

that certain combinations of (α(h), β(h)) are inadmissible. We also impose gradient-based

constraints on (α(h), β(h)) following Lugrin (2018), in order to improve the identifiability

of the parameter combinations. The motivation for these constraints is ensuring that the

derivative, with respect to x, of E(X(h)|X(0) = x) = α(h)x+ µ(h)xβ(h) is positive, for x ≥ u,

with u some suitable threshold; we then have the constraints α(h) + µ(h)β(h)xβ(h)−1 ≥ 0 and

α(h) ≥ 0 for all h.

4. INFERENCE

We consider two variants of the SCE model, differing by the manner in which “linear slope”

parameters {αk} are estimated. In the more general form, outlined in Section 4.1, these

parameters are estimated freely given the sample data, likelihood function and constraints

from Section 3.4. In the restricted form, outlined in Section 4.2, the decay of α with distance h

follows a prescribed physically-plausible exponential form described by only two parameters.

We first consider the more general “free” model.
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4.1. Likelihood for the “free” model

Consider p+ 1 equally-spaced points on a transect. Suppose we condition on the value of

HS at a point on the line, marked in black in the two examples of Figure 2. Our goal is to fit

a joint distribution for the values of HS at all remaining points, conditioned on an extreme

value observed at the conditioning point.

As the set of remaining random variables depends on the conditioning point chosen,

we require two indices to define locations: an index c ∈ {0, 1, 2, . . . , p} to indicate the

“conditioning” point, and an index j ∈ {1, 2, . . . , p} for the remaining points on the line,

which we henceforth call “remote” points. The conditioning point will therefore always have

an index of the form (c, 0), as illustrated in Figure 2, where c = 0 in the upper image, and

c = 2 in the lower.

We indicate the location of the conditioning point as sc0, and the location of remote points

using {scj}. The distances of remote points to the conditioning point are then denoted by

{hc0j}, with hc0j = |scj − sc0|. Similarly, distances between remote points (c, j) and (c, j′)

are denoted {hcjj′} with hcjj′ = |scj′ − scj|; example values of (c, j) and hc0j are indicated in

Figure 2. In the case of the lower image in Figure 2, note that there are locations that sit a

common distance from the conditioning point (with the same value of hc0j, shown as discs

of the same colour).

[Figure 2 about here.]

We assume that conditional dependence is isotropic on a transect, so that the parameters

of the SCE model are at most a function of inter-location distances only. Specifically, the

parameters α, β, µ and σ are functions of distance from conditioning location, and the

residual dependence between remote locations will in addition be a function of distances

between remote locations. We seek a model for the joint dependence structure for any number

of locations conditional on an extreme value at the conditioning location. For definiteness,
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consider first the case of two remote locations (c, j) and (c, j′) (with j′ 6= j) and conditioning

location (c, 0), and corresponding random variables (Xcj, Xcj′ , Xc0). We can then write the

SCE model as

(Xcj, Xcj′)|{Xc0 = xc0} ∼ MVN2 (Mcjj′ , Ccjj′) , xc0 > qτ (5)

where qτ is the quantile of a standard Laplace distribution with non-exceedance probability

τ ,

Mcjj′ = [α(hc0j), α(hc0j′)]xc0 + [µ(hc0j), µ(hc0j′)]x
[β(hc0j),β(hc0j′ )]

c0 (6)

and

Ccjj′ =

 x
β(hc0j)
c0 0

0 x
β(hc0j′ )

c0

 σ(hc0j) 0

0 σ(hc0j′)

 1 ρhcjj′

ρhcjj′ 1

 (7)

×

 σ(hc0j) 0

0 σ(hc0j′)

T  x
β(hc0j)
c0 0

0 x
β(hc0j′ )

c0

T

and ρ is the between-neighbour residual correlation parameter. We can extend the model

to three or more remote locations, or reduce it for one remote location in the obvious way.

Hence we can construct a sample Gaussian likelihood L under the model for all observations,

with conditioning variate exceeding qτ , of all possible combinations of two or more locations

on the line. We note that in Equation (7), any correlation function K(·) could be used in the

third matrix; for this work, we specifically use an exponential correlation function, so that

K(hcjj′) = ρhcjj′ .

The likelihood L is a function of {α(hc0j), β(hc0j), µ(hc0j), σ(hc0j)}, and ρ (for different

distances {hcjj′} between remote locations). Since the locations are equally-spaced, the
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values of α, β, µ and σ can only be estimated for given distances h = k∆, for lag index

k = 1, 2, . . . , p, where ∆ is the location spacing for the application (expressed in kilometres).

For ease of discussion below, we can therefore write L
M
= L(θ) for the full parameter set as

θ = {{αk, βk, µk, σk}pk=1, ρ}, (8)

where parameters are indexed by lag k not distance h, so that αk = α(k∆), etc.. In practice,

we also pool all available observations corresponding to unique combinations of distances

(i.e., from different choices of conditioning location (c, 0)) in the SCE likelihood; we thereby

exploit the sample well, in a computationally-favourable manner. We note, for this reason,

that the conditional extremes likelihood should be viewed as a pseudo-likelihood, since the

same observation (of each location on a transect) might enter more than one conditioning

likelihood contribution (corresponding to conditioning on extreme values at a particular

location). Practically, this may result in underestimation of posterior uncertainties. We also

note that different conditional likelihood contributions give consistent estimates of extremal

dependence under appropriate exchangeability assumptions.

4.2. MCMC for the free model

We use Bayesian inference to estimate the joint posterior distribution of parameters θ from

Equation (8). In our experience, Bayesian inference with reasonable prior specification and

MCMC scheme, provides a more reliable approach to parameter estimation, than maximum

likelihood techniques. An outline of the procedure, discussion of the priors used and an

algorithm, are given in the Appendix. In brief, we proceed as follows.

First, we use random search to find a reasonable starting value for θ. Then, to improve

on the starting solution, we use a Metropolis-within-Gibbs algorithm iteratively to sample
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each of the elements of θ in turn. Then we use a grouped adaptive random walk Metropolis-

within-Gibbs algorithm iteratively to convergence, judged to have occurred when trace plots

for parameters and their dependence stabilise. Within the grouped adaptive algorithm, we

jointly update the parameters (αk, βk, µk, σk) for each k, following the adaptive approach

of Roberts and Rosenthal (2009) to make correlated proposals. We also adjust proposal

standard deviation such that the acceptance rate is optimised for all parameters.

4.3. Inference for the “parametric-α” model

Though the constraints of Section 3.4 go some way to improving identifiability of suitable

parameter combinations, it is still difficult to obtain plausible results in some cases for the

free SCE model. Therefore, we shall consider a parametric form for α based on physical

considerations, whereby α(h) should in general decrease with increasing h, but also to

reduce the dimension of the parameter space, helping parameter identifiability. Specifically,

we explore the performance of a SCE model where α is parameterised as a function of

distance, writing

αk = exp

{
−
(
k

κ1

)κ2}
, k = 1, 2, . . . , p (9)

with parameters κ1, κ2 > 0. The resulting likelihood is L
M
= L(θ∗) with adjusted parameter

set

θ∗ = {κ1, κ2, {βk, µk, σk}pk=1, ρ}. (10)

The MCMC procedure for the parametric-α model is similar to that for the free model,

except that κ1, κ2 are separated from the grouped parameters (βk, µk, σk) for each k.

13



Environmetrics R. Shooter, E. Ross, J. Tawn, and P. Jonathan

4.4. Comparison of free and parametric-α models

To compare results from free and parametric-α models, we use the Deviance Information

Criterion (DIC), as proposed by Spiegelhalter et al. (2002), a Bayesian analogue of the

Akaike Information Criterion (Akaike 1974). Defining D(θ) = −2 logL(θ), we measure model

complexity using

pD = D(θ)−D(θ), (11)

where D(θ) is the average of the deviances (calculated after burn-in) and quantifies lack-of-

fit. Further, θ is the average of posterior estimates of θ, and note that this is an estimate for

the posterior mean. Explicitly, from the final m iterations of the MCMC chain, we calculate

θ =
1

m

m∑
i=1

θ(i) and D(θ) =
1

m

m∑
i=1

D(θ(i)),

where component-wise averages are taken in the first equation. The DIC is then calculated

as

DIC = pD +D(θ) = 2D(θ)−D(θ), (12)

with lower values preferred.

5. APPLICATION TO NORTHERN NORTH SEA NORTH-SOUTH

TRANSECT (NNS:N-S)

We now apply the free model and parametric-α model to data for the NNS:N-S transect.

We start by considering the free model in some detail (in Section 5.1), demonstrating that

the fitted model explains the data well. Next, in Section 5.2, we consider the corresponding

parametric-α model, and show that this also fits well, as well as using the DIC, as defined
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in Section 4.4, to show that the fit of free and parametric-α models is similar. The analysis

is extended to other transects and locations in Section 6. Throughout this section, we adopt

a conditioning threshold with non-exceedance probability τ = 0.9 for the SCE model, after

testing the stability of inferences to other choices of threshold. Threshold choice of course

involves a bias - variance trade-off: increasing sample size for tail modelling versus inclusion

of points from outside the tail region. We note that parameter estimates were relatively

stable for choices of extreme value threshold above τ = 0.8 and below either τ = 0.9 (for

NNS data) or τ = 0.95 (for CNS data).

5.1. Free model

The inference scheme introduced in Section 4 is used to estimate parameters θ (see

Equation 8) for the NNS:N-S transect. Posterior mean and credible intervals for estimates

of each of α(h), β(h), µ(h) and σ(h) from the final 1000 iterations (out of a total of 20000

iterations) of the MCMC algorithm described in Section 4.2 are shown in Figure 3. We note

that the parameter ρ has a posterior mode of approximately 0.73 and a 95% credible interval

with width of approximately 0.09.

[Figure 3 about here.]

We see from Figure 3 that α decays exponentially with h; this motivates the adoption of

the parametric-α model in Section 5.2. In particular, we see that α(h) 6= 1 for any h, so this

suggests asymptotic independence is present for all distances h. We see that µ(h) mirrors the

behaviour of α(h) to some extent, in that for h < 200 km, µ increases fairly quickly, before

stabilising and possibly decreasing again; this illustrates the anticipated dependence between

estimates for α and µ in the conditional extremes model. The parameter β is relatively

constant with h, taking values between 0.3 and 0.4, whereas σ increases in general with h. The

behaviour of α(h) and σ(h) appears reasonable given physical intuition and evidence from
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the data (the black points) in Figure 4: extremal dependence reduces as distance between

conditioning and remote sites increases, yet the overall variability at each location is constant

given that HS at each location has been transformed to standard Laplace scale.

Figures 4 and 5 display diagnostics for the fitted model. Figure 4 shows the original data on

Laplace scale (in black), at three different separations h of remote and conditioning points.

Data simulated under the fitted model are overlaid in red; there is good general agreement.

Figure 5 shows observed sequences of HS values along transects with conditioning value (of

HS at either end-point of the transect) between 3.5 and 4.5 on Laplace scale in blue, as well

as two simulated spatial processes from the fitted model, shown in red. The figure also shows

the corresponding 95% credible interval under the fitted SCE model with conditioning values

between 3.5 and 4.5; again there is general agreement between observation and simulation

under fitted model; in particular the simulated processes appear to have similar smoothness

to the observed processes.

[Figure 4 about here.]

[Figure 5 about here.]

Trace plots showing convergence of MCMC chains are given in the Supplementary Material

accompanying this article.

5.2. “Parametric-α” fit

Figure 3 suggests an exponential decay of parameter α with distance h in the free model.

Here, we examine the performance of the SCE model with the functional form for α(h) given

in Equation 9.

[Figure 6 about here.]
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Comparing Figures 3 and 6 shows that credible intervals for α(h) are considerably narrower in

the parametric-α model. This is not surprising, since the parametric-α model has a smaller

number of parameters. Moreover, the parametric decay of α in the parametric-α model

restricts its possible values for any h. Further, they show that posterior mean estimates for

α(h), β(h), µ(h) and σ(h) are similar under the two models.

The informal discussion above suggests that the quality of fit of free and parametric-α models

is similar. To compare these models more formally, we use the DIC introduced in Section

4.4. Values for parameter estimates and likelihood from the last m=1000 MCMC iterations

are used to estimate the DIC for the two models; the DIC for the free model was calculated

to be 27514.22, and for the parametric-α model 27501.68. Since the DIC for the parametric-

α model is smaller than for the free model, we infer in this case that the parametric-α

model is to be preferred, and that the difference between free and parametric-α fits is small.

However, the parametric-α model has the additional advantage that the computational time

is decreased due to the smaller number of parameters to estimate in this version of the SCE

model.

6. APPLICATION TO OTHER NORTH SEA TRANSECTS

The wave environment in the NNS and CNS is known not to be isotropic (e.g. Feld

et al. 2015); we might therefore suspect that the extremal spatial dependence in these

neighbourhoods might also be sensitive to transect orientation. Inspection of Figure 1 shows

that fetches in the NNS are in general longer than in the CNS; further, water depths in the

NNS are greater than those in the CNS. It is not unreasonable therefore to anticipate that

extremal spatial dependence may be different in different regions of the North Sea. Moreover,

for the data considered here, the CNS data are available on a finer grid than for the NNS data,

so we may be able to pick out finer-scale features of the dependence structure. Furthermore,
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the lengths of transects and their spatial resolutions vary, offering the possibility of detecting

finer-scale effects (in the CNS) and longer-range effects (for transects with largest distances

h). This motivates estimating SCE models for the NNS:E-W transect, and the CNS:N-S and

CNS:E-W transects.

Below, we start by comparing DIC values for free and parametric-α models. Since it was

found that the performance and characteristics of the models were similar for all transects,

subsequent discussion of parameter behaviour with h is restricted to the parametric-α model.

As in Section 5, all MCMC chains are of length 20000, and we utilise the final 1000 iterations

for inference.

6.1. Comparison of Model Fits for all Transects

We compare DIC values for free and parametric-α model parameterisations to assess in

particular whether the parametric-α model is a reasonable general representation for all

transects, relative to the free model. Table 1 gives values for the DIC for each of the transects

considered in this work.

[Table 1 about here.]

From the table, we see that the DIC is lower for the parametric-α model for NNS transects; for

the CNS transects, the free model produces lower values for the DIC. However, comparing

the differences between DIC values per transect with the variability of the corresponding

negative log-likelihoods from the MCMC, we see that differences in the DIC are small in

each case. We conclude that there is little material difference between free and parametric-α

fits for any of the transects.
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6.2. NNS east-west transect

We first apply the parametric-α model to NNS:E-W, coloured magenta in Figure 1, using

a non-exceedance probability of τ = 0.9 when applying the SCE model, as in Section 5.

Posterior estimates for model parameters are shown in Figure 7. This transect has fewer

sites available for analysis than NNS:N-S in Section 5, and hence fewer data may be pooled

together for estimation. Therefore, we would naturally expect model parameter uncertainties

to be larger. From the figure it is clear that the credible intervals are wider than for NNS:N-S,

at similar h.

[Figure 7 about here.]

The behaviour of parameter estimates for µ and σ with h are similar to those observed for

NNS:N-S. However, in NNS:E-W, β increases with distance. The figure also illustrates that

estimates for α(h) on NNS:E-W are larger; in particular, α(h ≈ 50 km) ≈ 0.9, suggesting

that dependence is much higher at short range for NNS:E-W than for NNS:N-S, for which

α(h ≈ 50 km) ≈ 0.6. Further, the rate of decay of α with h is smaller for NNS:E-W than for

NNS:N-S. These findings are plausible given physical intuition: the largest events in the NNS

are Atlantic storms travelling approximately E-W. It is reasonable then to expect that spatial

dependence along E-W transects may be higher than for transects with other orientations.

6.3. CNS transects

For the central North Sea north-south transects (CNS:N-S, coloured dark blue in Figure

1; and CNS:E-W coloured cyan), the separation ∆ of locations is smaller than for NNS

transects. Furthermore, as more data are available at each site for this ocean basin, we set

τ = 0.95 for the SCE model. Parameter estimates from the parametric-α model are shown

in Figure 8 for CNS:N-S.
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[Figure 8 about here.]

Compared to NNS transects, α decreases quickly with h. At h ≈ 100 km the value of α is

approximately 0.5, close to that estimated for the NNS:N-S transect at h ≈ 150 km, but

at h ≈ 250 km for NNS:E-W. The behaviour of µ and σ with h is similar to earlier cases,

and β is approximately constant at approximately 0.3, and σ at 0.52. Credible intervals for

estimates increase with h.

For the CNS:E-W transect, posterior estimates for the SCE parameters are shown in Figure 9;

this transect is slightly longer than the CNS:N-S transect.

[Figure 9 about here.]

The parameter µ increases with h, and β is approximately constant at approximately 0.33.

There is some evidence that σ(h) decreases for h > 50 km. The general behaviour of α with

h is similar to that for the CNS:N-S transect, with a somewhat slower decay.

7. DISCUSSION AND CONCLUSIONS

In this work, we use a spatial conditional extremes model to investigate the extremal

dependence of significant wave height HS along straight line transects of different lengths

with different spatial orientations and resolutions in the northern and central North Sea.

The analyses described in Sections 5 and 6 suggest that the general nature of extremal

dependence is similar for all transects. It appears that the linear dependence parameter α in

the SCE model decays with separation h of locations, and that this decay is approximately

exponential (recalling that HS is expressed on standard Laplace scale). The parameter µ

increases with h, potentially to a finite asymptote, while the parameter β appears to remain

approximately constant as a function of h. There is some evidence that σ increases initially

with h, but no consistent subsequent behaviour is observed.
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Features of the extremal dependence vary by region and transect orientation. For instance,

we note that the estimate of ρ, the residual dependence parameter, for the NNS:N-S

transect (with a posterior mode of approximately 0.73 and a 95% credible interval width

of approximately 0.06) is different from its value for the other three transects (for which ρ

is estimated to have a mode of approximately 0.5 in each case, and 95% credible intervals

of width of approximately 0.06). Figure 10(a) illustrates the behaviour of the conditional

mean α(h)x+ µ(h)xβ(h) from the SCE model for a (Laplace-scale) conditioning value x = 5,

approximately corresponding to the 0.997 quantile. Figure 10(b) shows the corresponding

evolution of conditional standard deviation σ(h)xβ(h).

[Figure 10 about here.]

From Figure 10 it is clear that extremal dependence of HS in the NNS is more persistent than

in the CNS, and that extremal dependence on the NNS:E-W transect is more persistent than

on the NNS:N-S transect (see also Section 6.2). That is, longer-range extremal dependence

is observed for the E-W transect in the NNS; the same conclusion was drawn by Ross

et al. (2017a) in their analysis of related data for the same region, using one- and two-

dimensional max-stable process models. It will be interesting to extend the current SCE

model to two-dimensional neighbourhoods of locations, particularly to investigate whether

directional differences, related to differences due to transect orientation reported here, are

observed.

From an intuitive perspective, we expect the value of SCE parameter α to decay to zero for

large h, since for large h the value at the conditioning location should not affect the value

at the remote location. For the same reason, we expect β(h) and µ(h) to decay to zero, and

σ(h) to asymptote to a finite value; see Wadsworth and Tawn (2018) for discussion of the

modelling of spatial independence at long range. We plan to examine this by exploring the

characteristics of storm peak HS on long transects extending over at least 1000 km.
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Inspection of Equations 2 or 6 readily shows that identification of SCE model parameters

is problematic in general, although considerations such as those of Keef et al. (2013a) help

restrict the admissible set of parameter values. Imposing an exponential form on the decay

of α(h) with h was found at least not to be detrimental in the current work. Inspection of

the resulting behaviour of parameter estimates in the figures above suggests that further

parameterisation of µ(h) in particular may be useful.

Understanding the extremal spatial dependence of ocean storms is important for the reliable

characterisation of extreme storms and their impact on marine and coastal facilities and

habitats. From a statistical perspective, the ocean environment provides a useful test bed

for models for spatial extremal dependence over a range of distances. From an offshore

engineering perspective, the findings of studies such as the present work can lead to

more informed procedures to accommodate the effects of spatial dependence in engineering

design guidelines. The spatial conditional extremes model would seem to offer a relatively

straightforward method to help achieve this.
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APPENDIX

This appendix summarises the constraints on the conditional extremes model introduced by

Keef et al. (2013a), and the MCMC procedure used for parameter estimation.
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The constraints of Keef et al. (2013)

We also constrain the possible parameter values of α(h) and β(h), for h > 0, as suggested

by Keef et al. (2013a). The constraint of interest, for α(h), β(h) and some given h, in this

work is Case 1 of Theorem 1 as given by Keef et al. (2013a); namely that we require either

α(h) ≤ min{1, 1− β(h)zh(q)v
β(h)−1, 1− vβ(h)−1zh(q) + v−1z+h (q)} (13)

or

1− β(h)zh(q)v
β(h)−1 < α(h) ≤ 1, and

(1− β(h)−1){β(h)zh(q)}1/(1−β(h))(1− α(h))−β(h)/(1−β(h)) + z+h (q) > 0. (14)

Here, z+h (q) is a quantile of the distribution of standardised residuals from the conditional

extremes model at distance h with non-exceedance probability q. Similarly, z+h (q) is quantile

of the distribution of standardised residuals from the conditional extremes model assuming

asymptotic positive dependence (i.e. forcing α(h) = 1, β(h) = 0) at distance h with non-

exceedance probability q. In practice, as suggested by Keef et al. (2013a), it is sufficient to

satisfy the constraints above for q = 1 and ν equal to the maximum observed value of the

conditioning variate.

MCMC procedure

The MCMC method implemented in Section 4.2 is adapted from the method of Roberts

and Rosenthal (2009). Suppose the parameters of interest are θ = {αk, βk, µk, σk}pk=1 ∪ {ρ},

where p is the number of sampling locations. The total number of parameters is therefore

nP = 4p+ 1. We impose uniform prior distributions for each of these parameters; explicitly,
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π(αk) ∼ Unif(0, 1), π(βk) ∼ Unif(0, 1), π(µk) ∼ Unif(−2, 2) and π(σk) ∼ Unif(0, 3) for all

k = 1, . . . , p, and π(ρ) ∼ Unif(0, 1). A total of n updates of θ will be performed.

First we obtain a random starting solution θ(0) by sampling the elements of θ from their

prior distributions, verifying that the starting solution has a valid likelihood (defined in

Section 4.1).

Writing θ
(i)
k as the value of the kth parameter of θ at the ith iteration, we then use an adaptive

random walk Metropolis-within-Gibbs scheme for nS iterations. That is, for i = 2, . . . , nS,

where nS < n, we update each θ
(i)
k in turn. If i ≤ 2nP , we propose a candidate value θ

(i)c
k

from distribution

Q1 = N(θ
(i−1)
k , 0.12).

For i > 2nP (and i ≤ nS) we propose θ
(i)c
k from distribution Q2 defined by

Q2 = (1− β)N(θ
(i−1)
k , 2.382Σi) + βN(θ

(i−1)
k , 0.12),

where β = 0.05, as proposed by Roberts and Rosenthal (2009), and Σi is the empirical

covariance of the parameter θk from the previous i iterations.

For i > nS, we use a grouped adaptive random walk Metropolis-within-Gibbs scheme,

updating quartets θ
(i)
Gk

= (α
(i)
k , β

(i)
k , µ

(i)
k , σ

(i)
k ) jointly, before updating ρ independently as

before. If i ≤ nS + 2nP , and the quartet state is θ
(i)
Gk

, we propose candidates θ
(i)c
Gk

from

distribution

Q3 = MVN(θ
(i−1)
Gk

, (0.12)/4).
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If i > nS + 2nP , we propose θ
(i)c
Gk

from distribution

Q4 = (1− β)MVN(θ
(i−1)
Gk

, 2.382Σi) + βMV N(θ
(i−1)
Gk

, 0.12/4),

where β = 0.05, as proposed by Roberts and Rosenthal (2009), and Σi is the empirical

variance-covariance matrix of the parameters θ
(i)
Gk

from the previous i iterations. Finally we

update ρ.

Throughout, a candidate state is accepted using the standard Metropolis-Hasting acceptance

criterion. Since prior distributions for parameters are uniform, and proposals symmetric, this

is effectively just a likelihood ratio. That is, we accept the candidate state with probability

min (1, Lc/L), where L and Lc are the likelihoods evaluated at the current and candidate

states respectively, with candidates lying outside their prior domains rejected. The MCMC

procedure is summarised in the following Algorithm 1.
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Sample θ(0) from prior distributions;
for i = 1, 2, . . . , n do

if i ≤ nS then
(Adaptive Random Walk Metropolis within Gibbs);
if i ≤ 2nP then

for k = 1, 2, . . . , nP do

Propose θ
(i)c
k from Q1 then accept or reject;

end
end
else

for k = 1, 2, . . . , nP do

Propose θ
(i)c
k from Q2 then accept or reject;

end
end

end
if i > nS then

(Grouped Adaptive Random Walk Metropolis within Gibbs);
if i ≤ nS + 2nP then

for k = 1, 2, . . . , p− 1 do

Propose θ
(i)
Gk

from Q3 then accept or reject;

end
Propose candidate from Q1 for ρ then accept or reject;

end
else

for k = 1, 2, . . . , p− 1 do

Propose θ
(i)c
Gk

from Q4 then accept or reject;

end
Propose candidate from Q2 for ρ then accept or reject;

end
end

end

Algorithm 1: Adaptive random walk Metropolis within Gibbs algorithm.
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Figure 1. NNS and CNS locations considered.
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Model DIC
Free Parametric-α

NNS:N-S 27514.22 27501.68
NNS:E-W 7360.93 7356.75
CNS:N-S 23471.67 23476.13
CNS:E-W 23809.94 23827.10

Table 1. Table of DIC values for the free fit model and parametric-α model for all of the
transect analyses.
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