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A model for the directional evolution of
severe ocean storms

S. Tendijck?, E. RossP, D. Randell” and P. Jonathan®d*

Summary: We develop a non-stationary Markov extremal model (MEM) as an extension of Winter and
Tawn (2016, 2017) and use it to characterise the time evolution of extreme sea state significant wave
height (Hg) and storm direction in the vicinity of the storm peak sea state. The approach first requires
transformation of Hg from physical to standard Laplace scale, achieved using a non-stationary directional
marginal extreme value model. The evolution of Laplace-scale Hg is subsequently characterised using a
MEM, and that of the rate of change of storm direction described by an autoregressive model, the evolution
variance of which is Hg-dependent. Simulations on the physical scale under the estimated model give realistic
realisations of storm trajectories consistent with historical data for storm trajectories at a northern North

Sea location.
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1. INTRODUCTION

We are often interested in understanding the evolution of time-series of extreme values,
potentially non-stationary with respect to covariates. For example, in an oceanographic
setting, there is interest in understanding the evolution of a severe ocean storm, consisting
of a set of consecutive sea states, in time from sea state to sea state. This involves joint
modelling of multivariate time-series of a combination of variables, some of which (e.g.
sea state significant wave height, henceforth Hg for brevity) are extreme, and others (e.g
covariates such as sea state storm direction) which are not. Such a model is important for

reliable design of marine structures, enabling estimation of distributions of variables such as
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crest elevation, individual wave height and total water level for whole storm events consisting
of multiple dependent sea states (as opposed to estimates for isolated sea states) given storm
peak characteristics. These can then be combined with distributions for the statistics of
storm peak magnitudes and storm rates of occurrence to estimate design conditions for
return periods of arbitrary length, as explained e.g. in Feld et al. (2018). Such a model
also allows the “directional dissipation” of an ocean storm to the characterised, facilitating

consistent estimation of return values across directional sectors (e.g. Ross et al. 2017).

In the context of characterising heatwave evolution, Winter and Tawn (2016, 2017) introduce
a Markov extremal model (MEM) for an interval of extreme values of time-series (transformed
to standard Laplace marginal scale) motivated by the conditional extremes model of
Heffernan and Tawn (2004). In this work we present a non-stationary extension of Winter
and Tawn incorporating evolution of sea state Hg and direction. In outline, the approach
consists of the following steps: (a) A common directional marginal model based on Ross et al.
(2017) is established for Hg of all sea states of all storms, given direction; (b) The marginal
model is used to transform the values of Hg given direction to standard Laplace scale using
the probability integral transform; (c) Intervals of time-series of threshold exceedances of
Laplace-scale Hg (of different lengths, but including occurrence of the storm peak, HZ") and
corresponding storm direction (together referred to as “storm trajectories”) are isolated, for
each of a large number of storm events; (d) A Markov extremal model of appropriate order
is estimated to describe the evolution of Laplace-scale Hg relative to the storm peak; (e) An
autoregressive time-series model of appropriate order with heterogeneous evolution variance
dependent on Laplace-scale Hg is established for the rate of change of storm direction on
its trajectory; (f) Models from steps (a), (d) and (e) are coupled to facilitate simulation
of realistic storm trajectories on physical scale. The method developed here is motivated
by ocean engineering requirements regarding characterisation of storm evolution, but is
generally applicable to non-stationary time-series of extreme events such as precipitation,
wind, ocean current (including features such as solitons) and storm surge in an environmental

context.

The key idea behind the proposed approach is the conditional extremes model of Heffernan
and Tawn (2004). This model is advantageous for two main reasons. (a) It allows effortlessly
the characterisation of more general forms of extremal temporal and spatial dependence

(including both asymptotic dependence and asymptotic independence) compared with its
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main competitors based on max-stable process modelling (e.g. Padoan et al. 2010, Chavez-
Demoulin and Davison 2012, Davison et al. 2012, Huser and Davison 2014) which typically
admit only asymptotic dependence, although extensions to asymptotic independence, and
mixtures of asymptotic dependence and asymptotic independence have been proposed
(e.g. Wadsworth et al. 2017; Rootzen et al. 2018). (b) It allows the partitioning of large
spatio-temporal problems into small pairwise ones. This facilitates computationally-efficient
inference, including incorporation of the effects of covariates compared with competitors
based on max-stable processes (but see also computationally elegant hierarchical max-stable
models of Stephenson 2009; Reich and Shaby 2012.)

The layout of the article is as follows. A motivating application is given in Section 2, involving
estimation of trajectories of extreme sea state Hg and corresponding storm direction for a
location in the northern North Sea. Section 3 provides a description of the model. Application
of the model to the northern North Sea example is then outlined in Section 4. A discussion
of results and conclusions is provided in Section 5. The method by which distributions of

MEM residuals are estimated is outlined in the appendix.

2. MOTIVATING APPLICATION

Significant wave height Hg can be defined as four times the standard deviation of the ocean
surface elevation at a spatial location for a specified period of observation. The application
sample is taken from the hindcast of Reistad et al. (2011), which provides time-series of
significant wave height and (dominant) wave direction for three hour sea states for the
period September 1957 to December 2012 at a northern North Sea location. Extreme sea
states in the North Sea are dominated by winter storms originating in the Atlantic Ocean
and propagating eastwards across the northern part of the North Sea. Sea states at northern
North Sea locations are usually more intense than in the southern North Sea. Directions of
propagation of extreme seas vary considerably with location, depending on land shadows
of the British Isles, Scandinavia, and the coast of mainland Europe, and fetches associated
with the Atlantic Ocean, Norwegian Sea, and the North Sea itself. In the northern North
Sea the main fetches are the Norwegian Sea to the North, the Atlantic Ocean to the west,
and the North Sea to the south. Extreme sea states from the directions of Scandinavia to

the east and the British Isles to the south-west are not possible. The shielding by these land
3
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masses is more effective for southern North Sea locations, resulting in a similar directional

distribution but reduced wave heights by comparison with northern North Sea locations.

With 0 indicating the direction from which waves propagate measured clockwise from North,
Figure 1(a) shows a directional plot of the complete sample of Hg data in grey. Storm
peak occurrences Hg” shown in black are local maxima of storm trajectories estimated as
outlined in Section 3. The effect of the land shadow of Norway in particular is visible at a
220°. Figure 1(b) gives a polar plot of storm trajectories for 15 typical storms. The lengths
and directional characteristics of storm trajectories vary considerably. Figure 2 shows the
evolution of Hg (panel (a)) and 6 (panel (b)) for the same 15 storms. The objective of the
current work it to estimate a realistic model for storm trajectories such as those illustrated

in Figure 1(b) and Figure 2.

[Figure 1 about here.|

[Figure 2 about here.]

3. MODEL

We estimate a model for the evolution of an interval I of time-series of consecutive values
for threshold exceedances of sea state significant wave height, and corresponding direction
{Y}, ©1}er, including the storm peak event (i.e. the occurrence of the largest value of Hg
for the storm), sampled at some constant rate. For convenience, we assume time labels
are centred such that for interval I, t =0 € I corresponds to the time of the storm peak
event. We estimate the model using a sample of m intervals {I;} of different lengths and
data {{yw, O tter, }r-;- The model is an extension of Markov extremal model of Winter
and Tawn (2016, 2017), expressed for time-series on marginal standard Laplace scale. We
therefore start the model description by outlining a non-stationary marginal model assumed
applicable for all occurrences of Hg used to transform the sample of Hg values to standard

Laplace scale.
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3.1. Marginal modelling, transformation to Laplace scale and isolation of storm

trajectories

We assume marginally that sea state significant wave height Y (for all intervals and all times
regardless of magnitude) follows a two-part truncated gamma-generalised Pareto distribution
(see Ross et al. 2017) with density

T % fra(yly, ¢, ) for y <4

f NN ADES
vyl 6.6 v ¥) {(1—7)xfcp(ylf,v,w)f0fy>w

where gamma shape 7 and (inverse) scale (, generalised Pareto shape £ and scale v and
threshold v are all functions of direction. In this work, 1 is estimated using non-stationary
quantile regression prior to inference for gamma and generalised Pareto parameters, although
in general ¢ can be estimated as part of a single whole-sample inference as in Randell et al.
(2016). Further

fG (yh/’ ()

fre W GY) = T

for y € [0, 4],

with gamma density

o u0) = osv e~

and generalised Pareto density
1 ¢ —1/¢-1
fapyl€,v.¢) = > (1 +- (z — iﬂ))

Using Fy to represent the estimated cumulative distribution function corresponding to

density fy, we transform the sample to standard Laplace “X” scale using

L[ bR R0 <1
- {— log[2{1 — F(Y)}] otherwise .

On Laplace scale, we identify storm intervals (and hence storm trajectories) as corresponding
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to contiguous sequences of values of X > 7 for some constant threshold 7. Typical examples
of the trajectories of the form {X;, O}, isolated in this way are illustrated on physical
scale (as {Y}, ©; }er) in Figure 1(b) and Figure 2 above, for 7 corresponding to the quantile
of the standard Laplace distribution with non-exceedance probability 0.75 .

3.2. Markov extremal model for Hg

Winter (2015) describes a general k™-order Markov extremal model MEM(k) for the evolution
of time-series of extreme events on standard Laplace scale exceeding threshold 5. In the
current work, as justified in due course in Section 4, a second-order Markov extremal model
(MEM(2)) is appropriate. We present this specific model here, as it is simpler to explain
than a general k*"-order model, yet captures all the important features of MEM(k). For the

“post-peak” portion {X;}:> of the time-series following the storm peak, model form is
(X1, Xiqo] = [0, o) Xo + Xt[ﬁl’ﬁﬂ [ + 0121, pig + 022Z5) for Xy >

where [Z1, Z,] is a dependent random variable, independent of X;, with unknown distribution
function G1.5, where element-wise multiplication is assumed. Threshold n and parameters

aq, ag, P, P2 are taken to be constant. To estimate [y, as] and [51, B2] we assume that
(Xeaj| X = 2) ~ N (agz + pja™, 03a®7) . j=1,2

and then use the set of residuals from the fit in kernel density estimation (see Appendix)
to estimate the joint distribution Gy of [Z1, Z5]. Simulation under the model requires
estimation of the conditional distribution Gy, which is also easily evaluated from the kernel
density estimation. The basic simulation for {X;}:>o relative to the storm peak event Xj
proceeds as follows. First, a value for X is sampled from the standard Laplace distribution.

Then a realisation of the time-series of X; is simulated using

X1 = X+ Xgl (1 +01Z1), and
Xt = OéQXt_Q + XtBEQ (/ubg + O-QZQM) for t = 2, 3, ce

A similar procedure is used to estimate the corresponding model for the “pre-peak” portion

{X:}i<0, and simulate under it. Diagnostics for the choice of MEM order are discussed further

6
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in Section 4.

3.3. Directional model

Exploratory analysis of the sample of directions {6} in Section 4 suggests that the rate of
change of storm direction d©,/dt when transformed empirically to marginal Gaussian scale
as Ay (= f(dO,/dt) for f estimated using the empirical cumulative distribution function
and the probability integral transform) can be approximated using an order k autoregressive

model (with & =1,2,...) according to
k
A = Z%’At—j + €
j=1

with parameters {v,}, 7; € [-1,1], where ¢ is an additive error following a Gaussian

distribution with variance dependent on the corresponding value of X,
€~ N (O, UQ(Xt))

and

o?(z) = A exp(—=Xox) + A3

The choice of functional form for o2 is motivated by the observation that there is little change
in storm direction when the value of storm severity is high. A number of similar functional

2 were examined in the application described in Section 4, with the form above

forms for o
providing good performance. Diagnostics for the choice of autoregressive model order are

discussed further in Section 4.

3.4. Simulation under model

To generate a single “post-peak” storm trajectory using the fitted model, the simulation
procedure is show below. An analogous approach is used to simulate the ”pre-peak”

trajectory.



Environmetrics S. Tendijck, E. Ross, D. Randell, and P. Jonathan

simulate storm peak xq, 0y;
fort=1,2,... do
simulate x; using MEM;
if X; > X, then

‘ reject trajectory and restart;
end
if X; < n then

‘ stop and save trajectory;
end

simulate ; using directional model;

simulate y; on physical scale using marginal transformation;

end

Algorithm 1: Simulation scheme for “post-peak” storm trajectory.

4. APPLICATION

4.1. Marginal modelling and transformation to standard marginal scale

Using Bayesian inference, we estimate the non-stationary gamma-GP marginal model
(Section 3.1) for the full sample of Hg, using a directional quantile threshold 1) corresponding
to non-exceedance probability 7 = 0.95 illustrated effectively in Figure 1(a). Posterior median
parameter estimates are illustrated in Figure 3 as thick solid lines. Figure 3 also shows
parameter median estimates and 95% credible intervals for a generalised Pareto model of
HZ' events exceeding the same directional quantile threshold . Since consecutive values
of Hg are dependent, we do not show credible intervals for parameters of the Hg model.
Nevertheless, the credible intervals for Hg” model parameters give an indication as to the
likely uncertainties in the Hg model parameters, since storm peak events are assumed

independent.
[Figure 3 about here.]

Then we transform the full Hg sample from physical “Y” scale to standard Laplace

marginal “X” scale using the median parameter estimates from the Hg model, and identify

8
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contiguous intervals above a second (constant) threshold n corresponding to a non-exceedance
probability of 0.75, thereby isolating a sample of storm trajectories. We examined the

sensitivity of subsequent inferences to the choice of 7 and found these to be relatively stable.

4.2. Markov extremal model for Hg

For brevity in Section 4.2 and Section 4.3 below, we discuss and illustrate model estimates for
the “pre-peak” portion of the storm trajectory only. Note that the corresponding analysis for
the “post-peak” portion was also preformed, and exhibited similar characteristics to those
discussed below. Both “pre-peak” and “post-peak” models are used in the simulation of

storm trajectories in Section 4.4.

We consider a number of diagnostics for the Laplace-scale data, to judge an appropriate
order k for the MEM(k) model to estimate. Figure 4(a) shows the partial autocorrelation
function for X, indicating strong effects at lag 1 and 2, and potentially at larger lags also.
Figure 4(b) shows estimates for the extremal dependence summary statistic x (e.g. Eastoe
et al. 2013) defined for time lag 7 and threshold w by

X(T,w) = Pr (X1, > w|X; > w)

The empirical estimate from the sample is shown in black. Other estimates are obtained
from simulations under MEM models of different orders fitted to the sample. Inspection of
Figure 4(b) suggests that MEM(2) provides a better description than MEM(1), and that higher

order models provide no additional benefit over MEM(2).
[Figure 4 about here.|

Figure 5 shows scatter plots for pairs of parameter estimates for the MEM(2) model from a

bootstrap resampling study.

[Figure 5 about here.|

4.3. Directional model for 0

Figure 6(a) shows the full sample of values for A; on X;, suggesting that A; reduces with

increasing X;, and motivating the choice of directional autoregressive evolution variance in

9



Environmetrics S. Tendijck, E. Ross, D. Randell, and P. Jonathan

Section 3.3. Figure 6(b) shows the partial autocorrelation function for A4, indicating that only
lag 1 is significant. We therefore proceed to fit an AR(1) model for A; with non-stationary

evolution variance o?(X,).
[Figure 6 about here.]

The estimated form of o?(X;) with X; is illustrated in Figure 7 with 95% bootstrap

uncertainty band, together with an empirical estimate direct from the sample.

[Figure 7 about here.|

4.4. Simulation under model and model validation

We use the simulation procedure from Section 3.4 to generate storm trajectories under the
estimated non-stationary MEM(2) model. As indicated in Algorithm 1, the first step in the
simulation would typically be to sample a realisation storm peak significant wave height and
direction. This requires estimation of a model for the rate of occurrence of storm peak events
in a given direction, and estimation of a model for the size of storm peak significant wave
height given direction (the latter similar to that illustrated in Figure 3). In the current work,
since focus is on estimation of storm evolution given storm peak, rather that estimating
storm peak itself, we choose for clarity and simplicity to sample storm peak events with
replacement from the historical sample of storm peaks rather than from a statistical model

for storm peak characteristics.

Figure 4(b) and Figure 5 illustrate that the extremal dependence y of simulated trajectories
with lag agrees well with that of the original sample, and that non-stationary characteristics
of the evolutionary variance of A; are also in good agreement. Figure 8 shows 15 typical
realisations in the same format as Figure 2; the characteristics of the trajectories in the two

figures appear similar.
[Figure 8 about here.]

Further, we choose to examine whether the distribution of lengths of storm trajectories
generated under the model are consistent with that of the original sample; this is of particular
interest, since we do not explicitly seek to estimate storm length in the model from Section 3.
Figure 9 illustrates this comparison for both MEM(1) and MEM(2) models. Agreement for the
MEM(2) model is considerably better as might be expected.

10
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[Figure 9 about here.|

Figure 10 compares the full distribution of sea state Hg from the original sample with that
estimated from simulation under the MEM(2) model, in terms of the probability density
function and the tail distribution. There is some suggestion that the mode of the body of
simulated Hg is to the left to that of the original sample, but agreement is generally again

good.
[Figure 10 about here.]

Figure 11 is a directionally-resolved version of Figure 9, comparing the distributions of storm
lengths per directional octant. Figure 12 is a directionally-resolved version of Figure 10,
comparing the distributions of Hg per directional octant. As in Figure 9 and Figure 10,

agreement between simulations under the model and the original sample is good.

[Figure 11 about here.|

[Figure 12 about here.|

5. DISCUSSION AND CONCLUSIONS

We develop a non-stationary Markov extremal model (MEM) as an extension of Winter
and Tawn (2016, 2017) and use it to characterise the time evolution of extreme sea state
significant wave height (Hg) in the vicinity of the storm peak sea state. The approach first
requires transformation of Hg from physical to standard Laplace scale, achieved using a
non-stationary directional marginal extreme value model. The evolution of Laplace-scale
Hg is subsequently characterised using a second-order MEM, and the evolution of rate of
change of storm direction, transformed to Gaussian scale, is described by a first-order
autoregressive model, the evolution variance of which is Hg-dependent. Simulations on the
physical scale under the estimated model give realistic realisations of storm trajectories
consistent with historical data, in terms of the distributions of trajectory lengths and total

marginal distribution of Hg, at a northern North Sea location.

We consider the original MEM to be an important contribution to the environmental statistics

and ocean engineering literature, since simple descriptions of the evolution of time-series

11
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of extreme values of variables from the physical environment are needed in many contexts.
Given that covariate effects are present in the majority of ocean engineering settings, we
consider the current work to be a useful extension of MEM, allowing more realistic application
in such settings. We note as obvious examples estimation of surge trajectories (e.g. Ross
et al. 2018) for ocean storms, and characterisation of ocean current soliton events. The main
motivation for the current work is the development of a statistical model to describe evolution
of storm trajectories so that, given storm peak characteristics, realistic statistical simulators
of storm evolution (as opposed to “storm matching” to events in a library of historical storms
used in e.g. Feld et al. 2015) can be used for met-ocean design, thereby facilitating a more

formal model-based uncertainty quantification.

There are many ways in which the current non-stationary model can be extended. In the
current work we have assumed, given non-stationary marginal transformation to Laplace
scale, that MEM parameters (on Laplace scale) are stationary with respect to covariate; we
judge this to be a reasonable starting assumption supported by model diagnostics in the
current application. However, in general we suspect that this may not always be the case, and
that MEM parameters themselves may show covariate dependence. Keef et al. (2013) proposes

additional constraints on the conditional extremes parameters which could be incorporated.

It would be interesting to consider the joint evolution of time-series of variables such as
sea state Hg and spectral peak period Tp during a storm, non-stationary with respect to
a common set of covariates; or joint modelling of time-series such as sea state Hg, wind
speed and current speed with a much larger set of potential covariates. We might also
consider the temporal evolution of storm trajectories jointly for multiple locations in a
neighbourhood. The between-variable, between-time dependence structure of such a model

would be interesting and probably challenging to identify.
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APPENDIX: ESTIMATION OF DISTRIBUTION OF MEM RESIDUALS

Following Section 3, for the “post-peak” portion {X;};>o of the time-series following the

storm peak, the second-order Markov extremal model form is
(X1, Xigo] = [an, o] Xt + Xt[ﬁl’ﬁﬂ (1 + 0121, po + 0225] for Xy >

where [Z1, Z5] is a dependent random variable, independent of X;, with unknown distribution
function G1.o, where element-wise multiplication is assumed. We write the full set of residuals
available from the regression fit as {Z;1, 2i2}7, where 2;; = (24,4, — &,y — /ljxij)/(a]xfj)
j = 1,2 with {t;} representing the occurrence times of the corresponding observations of X,
and t = 0 corresponding to the time of the storm peak. Then, following Winter (2015) we
define kernel density estimates for the density g; of Z; and gy 5 of [Z1, Z5] as

= ()

and

912 21722 Zh1h2 < hy 1>f( 2h2 2)

where f is the kernel density, taken in this work to be Gaussian, and (hq, hy) are kernel

widths estimated by inspection of resultant estimates for densities g; and g1 2. Then the

cumulative distribution function Gy, of the conditional residual Zy; can be written

22'2
G2|1 22’21 E w’L Zl
hz

where F' is the kernel cumulative distribution function corresponding to density f, and

weights {w;(z1)} are given by

o (£ (5) ()

13
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