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We investigate the effect that the choice of measurement scale has upon
inference and extrapolation in extreme value analysis. Separate analyses of
variables from a single process on scales which are linked by a nonlinear
transformation may lead to discrepant conclusions concerning the tail behav-
ior of the process. We propose the use of a Box–Cox power transformation
incorporated as part of the inference procedure to account parametrically for
the uncertainty surrounding the scale of extrapolation. This has the additional
feature of increasing the rate of convergence of the distribution tails to an
extreme value form in certain cases and thus reducing bias in the model es-
timation. Inference without reparameterization is practicably infeasible, so
we explore a reparameterization which exploits the asymptotic theory of nor-
malizing constants required for nondegenerate limit distributions. Inference
is carried out in a Bayesian setting, an advantage of this being the availability
of posterior predictive return levels. The methodology is illustrated on both
simulated data and significant wave height data from the North Sea.

1. Introduction. The usual objective of extreme value analysis is to use sam-
ple data from rare events of a process to make rational predictions about the likely
levels of future extremes of the process. To do this, one models extreme data using
an asymptotically justified probability model. The most fundamental such exam-
ple is the generalized extreme value (GEV) distribution. The GEV arises as the
limiting law for appropriately normalized maxima of independent and identically
distributed random variables, under weak conditions discussed in Section 2; it is a
three parameter distribution with distribution function

G(x) = exp
{
−

[
1 + ξ

σ
(x − μ)

]−1/ξ

+

}
,

where μ,σ > 0, ξ are respectively location, scale and shape parameters, and
z+ = max{0, z}. This distribution is herein denoted GEV(μ,σ, ξ). The cases
ξ > 0, ξ = 0 (interpreted as the limit ξ → 0) and ξ < 0 are sometimes referred to
as the Fréchet, Gumbel and Negative Weibull types, respectively. Other approaches
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to modeling extreme data are discussed in Section 3. Mathematical details of uni-
variate extreme value theory for stationary processes are covered extensively in
Leadbetter, Lindgren and Rootzén (1983), while more statistical aspects are treated
in, for example, Coles (2001).

There are many applications of extreme value analysis where data pertaining
to the same physical process may naturally be measured on more than one scale.
If the transformation between measurement scales is linear, the appropriate type
of extreme value distribution remains unaltered. If, on the other hand, a nonlin-
ear transformation is applied, different limiting distributions may be appropriate.
Applying extreme value methods to the data on these different scales can lead to
disparate conclusions regarding future extremes. This paper proposes methodol-
ogy which allows the modeler to take into account their uncertainty over the scale
upon which to conduct extreme value analysis.

As a motivating example consider the following. In ocean engineering, signifi-
cant wave height (Hs), defined as four times the standard deviation of displacement
from mean sea level, is a measure of ocean energy. Understanding of the extremes
of this variable is vital for offshore structural design. However, one might equally
wish to consider the extremes of the drag force induced by the waves on a fixed off-
shore structure, a variable which is proportional to the square of Hs [Tromans and
Vanderschuren (1995)]. Although the two variables are measurements of the same
physical process, differing conclusions may be derived concerning their tail be-
havior. For the wave height data to be considered in Section 4, a simple likelihood-
based analysis of weekly maxima of Hs produces a 100-year return level estimate
and 95% confidence interval of 14.66 meters (13.63, 16.35). However, analyzing
H 2

s instead, then back-transforming the results to the Hs scale, the estimate be-
comes 16.27 meters (14.51, 18.92). Furthermore, the estimated shape parameters
of the two variables differ markedly: for Hs , ξ̂ = −0.12 (−0.17, −0.06), whereas
for H 2

s , ξ̂ = 0.11 (0.04, 0.19). These results suggest light-tailed behavior with a
finite upper end point for Hs , yet heavy-tailed behavior with no finite upper end
point for H 2

s . Such a situation gives rise to increasingly discrepant return level in-
ferences with lengthening return period. It seems natural therefore to account for
this uncertainty over the scale on which to extrapolate as part of the inference.

We approach this problem by incorporating a power transformation into the in-
ference procedure; specifically, we use the well-known Box–Cox transformation
[Box and Cox (1964)]. This transformation offers the possibility of improving the
rate of convergence to the limiting extreme value form, since different distributions
converge at different rates. This type of transformation restricts the methodology
to cases where the extreme data are strictly positive, however, this encompasses a
wide variety of practical problems. Use of the Box–Cox transform has been pre-
viously considered by Teugels and Vanroelen (2004) as a way of improving the
rate of convergence, and in Section 2 we discuss how part of our work is related
to theirs. However, their work is purely probabilistic and, unlike ours, does not ex-
tend to consider use of the theory as a statistical technique. The use of the Box–Cox
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transformation in extreme value analysis has also been considered in an entirely
different context in the work of Eastoe and Tawn (2009). In their work the moti-
vation was the standardization of nonstationary data prior to the consideration of
extreme values.

We choose to adopt a Bayesian methodology for our inferential procedures, pro-
ceeding via Markov chain Monte Carlo (MCMC). The Bayesian framework allows
us to produce particularly useful posterior summaries incorporating uncertainty
from both the data and the parameters. In particular, it enables the calculation of
a posterior predictive distribution, which provides a single useful summary of the
likelihood of future extremes under the two stated sources of uncertainty [Coles
and Tawn (1996)].

Moving from the usual three parameter extreme value models to four parameter
models including a Box–Cox parameter necessitates a reparameterization. The the-
ory we exploit to derive our reparameterization is presented in Section 2, including
a discussion on the rate of convergence. In Section 3 we outline our reparameter-
izations and discuss associated inference methods. In Section 4 we illustrate the
methodology on simulated data and the aforementioned significant wave height
data. A discussion of the work and outstanding issues is given in Section 5.

2. Theory.

2.1. Asymptotic and penultimate theory. Suppose X1, . . . ,Xn are independent
and identically distributed according to a probability law with distribution function
FX , with density fX . In what follows it will be assumed that FX(x) is twice dif-
ferentiable for all sufficiently large x. Let Y denote these random variables after
the application of a Box–Cox transformation; that is, Y = {Xλ − 1}/λ, λ ∈ R, the
case λ = 0 taken as Y = logX, with distribution function FY and density fY . De-
fine MX,n = max{X1, . . . ,Xn}. The extremal types theorem [Fisher and Tippett
(1928)] states that if there exist sequences of constants {aX,n > 0}, {bX,n} such
that as n → ∞

P
(

MX,n − bX,n

aX,n

≤ x

)
w−→ G(x)(2.1)

for some nondegenerate limit distribution G(x), then G is necessarily of a gen-
eralized extreme value type. The symbol ‘

w→’ denotes weak convergence of the
distribution functions.

Let {aX,n}, {bX,n} henceforth specifically denote the normalizing sequences
which lead to a GEV(0,1, ξX) limit distribution for the MX,n. Smith (1987) shows
that the sequences {aX,n}, {bX,n}, and the shape parameter ξX can be found as fol-
lows. Let hX(x) = {1−FX(x)}/fX(x) denote the reciprocal hazard function of the
parent distribution FX . Then

bX,n = F−1
X (1 − 1/n), aX,n = hX(bX,n), ξX = lim

x→xF
h′

X(x)(2.2)
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with xF = sup{x :FX(x) < 1}, that is, the upper end point of the distribution. A fi-
nite value for ξX given by limit (2.2) and our assumptions on FX are sufficient
for weak convergence (2.1) and necessary and sufficient for both convergence of
the densities and derivatives of the densities to those of the limiting extreme value
form [Pickands (1986), Theorem 5.2] and we assume this applies throughout.

The usual premise of extreme value modeling is to assume that the limiting
form (2.1) holds exactly for some finite n. Fisher and Tippett (1928) and Smith
(1987) propose an approximation of limit (2.1) by MX,n

.∼ GEV(bX,n, aX,n, ξX,n)

with ξX,n = h′
X(bX,n), referred to as the penultimate approximation to the shape

parameter. From (2.2) we see ξX = limn→∞ ξX,n. For inference purposes we there-
fore assume a three parameter model MX,n

.∼ GEV(βX,αX,γX), where we reserve
the notation ξX for the limiting shape parameter. The proposal of this paper is to
generalize this modeling assumption to

MY,n = Mλ
X,n − 1

λ

.∼ GEV(βY ,αY , γY ),

thereby incorporating a form of parametric scale uncertainty into the inference pro-
cedure. This gives a four parameter extreme value model, with canonical parame-
terization {βY ,αY , γY , λ}. The complex nature of the relationships between these
parameters, however, makes direct inference practicably infeasible (see Figure 2 in
Section 4 for an illustration). Thus, a reparameterization to obtain more orthogonal
relationships is necessary. Our strategy for orthogonalization relies upon obtaining
{aY,n}, {bY,n}, ξY,n in terms of the associated quantities for the original X variables.

THEOREM 1. Under the conditions such that convergence (2.1) holds, with
norming sequences {aX,n}, {bX,n} producing the GEV(0,1, ξX) limit, then

P
(

MY,n − bY,n

aY,n

≤ y

)
w−→ GY (y) = exp{−[1 + ξY y]−1/ξY+ }

holds for some finite ξY when

bY,n = (bX,n)
λ − 1

λ
, aY,n = aX,n(bX,n)

λ−1.(2.3)

Furthermore, if FX is twice differentiable for sufficiently large x, then the limiting
shape parameter ξY takes the form

ξY = ξX + lim
x→xF

hX(x)

x
(λ − 1)(2.4)

with the penultimate approximation to this being given by

ξY,n = ξX,n + aX,n

bX,n

(λ − 1).(2.5)

For any such distribution which has ξX ≤ 0, then ξY = ξX .
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See the Appendix for a proof. Equations (2.3) and (2.4) are used in Section 3
to motivate reparameterizations for the statistical models for block maxima and
threshold exceedances. Note that when FX is in the domain of attraction of a
Negative Weibull or Gumbel limit, then FY is in the same domain of attraction;
only those distributions which have a Fréchet limit can be coerced into a differ-
ent domain. However, as we are never practically in the limit, and hX(x)/x > 0
for x > 0, values of λ other than 1 will alter the penultimate approximation and
thus change our practical estimation of the shape parameter for the transformed
variables regardless of domain of attraction.

2.2. Rate of convergence. It was noted in Section 1 that the rate of conver-
gence to the limiting extreme value distribution may be altered by a power trans-
formation. In Teugels and Vanroelen (2004) the theory of regular variation is ex-
ploited to show what the optimal values of the power transformation parameter
should be to maximize the rate of convergence in the case where ξX ≥ 0. Under
our assumptions on FX , we derive similar limiting results to Teugels and Vanroe-
len (2004) for ξX ≥ 0, but also consider the case ξX < 0 and the penultimate ap-
proximations. In particular, the examples studied in Teugels and Vanroelen (2004)
satisfy our assumptions.

We use approximations developed by Smith (1987) as a basis for discussion on
rates of convergence. Smith shows that for h′

X 	≡ 0 one may write

{FX(aX,nx + bX,n)}n = exp
{−[1 + h′

X(z)x]−1/h′
X(z)} + O(n−1)(2.6)

for some z ∈ [min{aX,nx + bX,n, bX,n},max{aX,nx + bX,n, bX,n}]. For h′
X ≡ 0 the

first term on the RHS is e−x . It follows that the rate of pointwise distributional
convergence is

max
{
O

(|h′
X(bX,n) − ξX|),O(|h′

X(aX,nx + bX,n) − h′
X(bX,n)|),O(n−1)

}
.

We focus on demonstrating how an improved rate of convergence is possible
when this rate is equal to O(|h′

X(bX,n) − ξX|). This will in fact be the case if

O({hX(bX,n)}rh(r+1)
X (bX,n)) ≤ O(|h′

X(bX,n) − ξ |),∀r ≥ 1. This is a condition
satisfied by a wide range of theoretical examples, including Examples 1–4 be-
low. For such distributions an improved rate of convergence will be achieved if
O(|h′

Y (bY,n) − ξY |) < O(|h′
X(bX,n) − ξX|). By expressions (2.2), (2.4) and (2.5),

|h′
Y (bY,n) − ξY |

(2.7)

=
∣∣∣∣h′

X(bX,n) + hX(bX,n)

bX,n

(λ − 1) − lim
x→xF

{
h′

X(x) + hX(x)

x
(λ − 1)

}∣∣∣∣

= |h′
X(bX,n) − ξX|

∣∣∣∣1 + (λ − 1)
hX(bX,n)/bX,n − limx→xF hX(x)/x

h′
X(bX,n) − ξX

∣∣∣∣.(2.8)

Equation (2.8) demonstrates accelerated convergence under the transformation if
the second term on the RHS improves the order. This is the case for any value of
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λ which gives convergence of this second term to 0. In particular, this means there
is a sequence of λ values, denoted {λ∗

n} and given by

λ∗
n ∼ 1 − h′

X(bX,n) − ξX

hX(bX,n)/bX,n − limx→xF hX(x)/x
,(2.9)

which provide the best rate of convergence under any such transformation.
For statistical applications the convergence rate of densities is also relevant.

Pointwise density convergence entails an additional error term of O(|hX(aX,nx +
bX,n)/hX(bX,n) − (1 + ξXx)|). The conditions on hX which allow us to consider
O(|h′

X(bX,n) − ξX|) for distribution function convergence give that

O
(|hX(aX,nx + bX,n)/hX(bX,n) − (1 + ξXx)|) = O

(|h′
X(bX,n) − ξX|).

For each of our variety of examples below pointwise density convergence occurs at
the same rate as distribution function convergence, and any λ which improves the
rate of distribution function convergence also improves that of the density function.
We can of course never check any of these conditions in practice, and it is our
data rather than any theoretical knowledge which point to a value of λ; as such,
we presume that by pursuing this approach we at least do not lose in terms of
convergence rate of the densities.

Below we provide illustrations for four different classes of distribution, largely
following the examples laid out in Smith (1987). We make the corresponding as-
sumptions that the relationships in Examples 1–3 are twice-differentiable, in the
sense that we can differentiate term-wise without affecting the O-term representa-
tion. Table 1 summarizes the shape parameters for these examples, alongside the
order of convergence of the penultimate approximations. Also detailed are values
of λ, denoted λ∗, which provide an improved rate of convergence. Note that these
values are the limiting values of the sequence {λ∗

n}, where such a limit exists.

EXAMPLE 1. xF = +∞; α,β, ε,C > 0;D ∈ R,

1 − FX(x) = Cx−α{1 + Dx−β + O(x−β−ε)} as x → xF .

This class belongs to the Fréchet domain of attraction. Examples include the
Pareto, t , F and Cauchy distributions. If D 	= 0, then taking λ∗ = β forces the
leading term in |ξY,n − ξY | to vanish, thus improving the convergence rate.

EXAMPLE 2. xF < +∞; α,β, ε,C > 0;D ∈ R,

1 − FX(x) = C(xF − x)α
{
1 + D(xF − x)β + O

(
(xF − x)β+ε)}

as x → xF .

This class belongs to the Negative Weibull domain of attraction. Examples are dis-
tributions with bounded upper tails, such as the beta, along with various truncated
distributions. Depending on the value of β , the best rate of convergence is either
given by λ∗ = 1 (β > 1), or if β < 1, the value of λ is asymptotically inconsequen-
tial, and in this case the sequence {λ∗

n} has no limit.
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TABLE 1
Shape parameters and the leading order terms from the penultimate approximations for

Examples 1–4. Three subcases for Example 4: (i) γ < 0, (ii) γ = 0, (iii) γ > 0

Example ξX ξX,n − ξX ξY ξY,n − ξY λ∗

1 1/α ∼ Dβ(β−1)

α2 (nC)−β/α λ/α ∼ Dβ(β−λ)

α2 (nC)−β/α β

2 −1/α ∼ Dβ(β+1)

α2 (nC)−β/α −1/α ∼ Dβ(β+1)

α2 (nC)−β/α − λ−1
xF α

(nC)−1/α 1

3 0 ∼ −αCb−α−1
X,n 0 ∼ C(λ − (α + 1))b−α−1

X,n α + 1

4(i) γ β(nγ ) γ λβ(nγ ) 0
4(ii) β 0 λβ 0 None
4(iii) N/A N/A γ † 0† 0

†If and only if λ = 0.

EXAMPLE 3. xF = +∞; α > −1; ε > 0;C > 0,

hX(x) = 1 − FX(x)

fX(x)
= Cx−α{1 + O(x−ε)} as x → xF .

This class belongs to the Gumbel domain of attraction. Examples include exponen-
tial (α = 0), normal (α = 1), Weibull (α = γ − 1, for Weibull shape parameter γ )
and gamma (α = 0). Taking λ∗ = α + 1 improves the rate of convergence, again
via elimination of the leading order term in |ξY,n − ξY |.

In particular, note that for the normal distribution λ∗ = 2 leads to faster con-
vergence, the rate being improved from O((logn)−1) to O((logn)−2). More gen-
erally for sub-asymptotic levels, when (2.9) is used to obtain the appropriate se-
quence, λ∗

n ↗ 2 as n → ∞. This example is revisited in Section 4.1.2.

EXAMPLE 4. xF = +∞ if γ ≥ 0, otherwise xF = eu−β/γ ; β > 0;γ,u ∈ R,

1 − FX(x) =
[
1 + γ

β
(logx − u)

]−1/γ

+
.

This corresponds to the class of log-Pareto distributions [Cormann and Reiss
(2009)]. For this class limx→xF h′

X(x) does not exist if γ > 0; in this case the
distribution is considered ‘super-heavy-tailed’ and falls into the domain of attrac-
tion of an extreme value distribution if and only if the Box–Cox parameter λ = 0.
This provides the most well-known example of a distribution function outside any
domain of attraction: 1 − FX(x) = 1/ log(x), x > e, when γ = β = u = 1.

When limx→xF h′
X(x) does not exist, (2.8) and (2.9) lack meaning, and one may

revert to (2.7) to investigate whether any value of λ which forces the existence of
limy→yF h′

Y (y) can be found. Direct consideration of h′
Y (y), in this case writing x

in place of bX,n, yields

β + γ (logx − u) + γ − (λ − 1) lim
x→xF

{β + γ (logx − u)},
the limit of which can be seen to exist if and only if λ = 0.
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3. Methodology.

3.1. Models. The modeling setup we introduce for block maxima is

MX,n
.∼ GEV(βX,αX,γX), MY,n = Mλ

X,n − 1

λ

.∼ GEV(βY ,αY , γY ).

This provides parameter sets θX = {βX,αX,γX} and θY = {βY ,αY , γY , λ}. In par-
ticular, the shape parameter γY is our finite sample approximation to ξY,n, the
penultimate approximation to the limiting shape parameter ξY . Estimation of the
parameter set θY directly is unwieldy. This is caused by the strong dependence
introduced through the additional parameter λ, as exhibited in the norming con-
stant and penultimate approximation expressions of equations (2.3) and (2.4); see
also Figure 2 in Section 4.1. Our approach to reducing the dependence among the
parameter set is described in the following section.

The above description pertains specifically to the GEV model, however, a com-
mon alternative to the block maxima approach in extreme value analysis is to
model all data which exceed some high threshold. The two modeling strategies
employed for this purpose are (i) model exceedances via the generalized Pareto
distribution [Davison and Smith (1990)], or (ii) model exceedances using a non-
homogeneous Poisson process [Pickands (1971)]. Case (i) is essentially a refor-
mulation of case (ii), so we discuss here only the latter approach. The formal as-
ymptotic justification for the Poisson process model is that if we have a sequence
of two-dimensional point processes

Pn =
{(

Xi − bX,n

aX,n

,
i

n + 1

)
: i = 1, . . . , n

}
,

then on (x∗
F ,∞) × (0,1), where x∗

F = limn→∞{xF − bX,n}/aX,n with xF =
inf{x :FX(x) > 0}, Pn → P , a Poisson process with intensity measure

	{(x,∞) × (a, b)} = (b − a)(1 + ξXx)
−1/ξX+ , 0 ≤ a < b ≤ 1, x∗

F < x < ∞.

The normalizing constants {aX,n}, {bX,n} and the shape parameter ξX are exactly
as before, thus, for statistical inference on un-normalized data we model using a
three parameter nonhomogeneous Poisson process, denoted PP(βX,αX,γX), with
intensity measure

	{(x,∞) × (a, b)} = (a − b)

[
1 + γX

αX

(x − βX)

]−1/γX

+
.(3.1)

This parameterization is easily unified with that of the GEV. If observed data cor-
respond to a particular number of blocks NB , then to estimate the GEV parameters
corresponding to these block maxima, {β ′

X,α′
X,γ ′

X}, one assumes NB independent
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replications of the Poisson process with a = 0, b = 1. Thus, the statistical model
becomes a Poisson process with intensity measure

NB

[
1 + γ ′

X

α′
X

(x − β ′
X)

]−1/γ ′
X

+
.(3.2)

The relation between the parameters in (3.1) with a = 0, b = 1 and (3.2) are given
by

γ ′
X = γX = γ, β ′

X = βX − αX

γ

(
1−

(
1

NB

)γ )
, α′

X = αX

(
1

NB

)γ

.(3.3)

Both GEV and point process methods are considered in our examples in Section 4,
where the key focus of our modeling is return level inference.

3.2. Reparameterization. When fitting a GEV(βY ,αY , γY ) distribution to
MY,n, the parameters {βY ,αY } are the unknown quantities {bY,n, aY,n}. This is
a direct consequence of aY,n, bY,n being specifically the sequences which give a
GEV(0,1, ξY ) limit distribution for MY,n. Therefore, Theorem 1 leads to the repa-
rameterizations

βY = βλ
X − 1

λ
, logαY = (λ − 1) logβX + logαX,(3.4)

the log function being used in the latter to both ensure the positivity constraint is
respected and to linearize dependence. For γY the situation is slightly more subtle.
Equation (2.5) suggests taking

γY = γX + αX

βX

(λ − 1).(3.5)

However, recalling equation (2.6), one can see that the estimable value of the shape
parameter will not in general be h′

Y (bY,n), but rather closer to being h′
Y (bY,n + ε),

for some unknown ε. Thus, the parametric form (3.5) which is motivated by equa-
tion (2.5) is not strictly appropriate, and the discrepancy between bY,n and bY,n + ε

can be sufficiently large that the structure (3.5) is a poor choice. This presents a
problem finding a satisfactory theoretical solution to the ratio in expression (3.5)
which multiplies λ − 1.

To overcome this, we have adopted the pragmatic solution of setting

γY = γX + c(λ − 1),(3.6)

where c is a fixed value estimated prior to inference. As equation (3.6) corresponds
to a linear relationship between λ and γY , we used the shape of the profile like-
lihood for {γY ,λ} to identify the gradient of the relationship. We estimate c via
calculating the profile (log-)likelihood, P
(γY , λ) on a fine grid and performing
a weighted least squares fit to the grid points in order to extract this slope. The
weights are chosen at {γY ,λ} to be exp[−2{P
(γ̂Y , λ̂)− P
(γY , λ)}], thus ensuring



MEASUREMENT SCALE IN EXTREME VALUE MODELING 1567

that the ridge of high likelihood dominates the fit and reduces sensitivity of the
resulting estimate to the choice of grid. Note that the calculation of P
(γY , λ) over
a particular region of interest presents no difficulties, but full inference from the
likelihoods for θY is infeasible. This two-step approach to the reparameterization
has proven to work well in practice.

3.3. Inference. The likelihood functions for a general GEV(β,α, γ ) distribu-
tion and PP(β,α, γ ) above a threshold u are given for m independent and identi-
cally distributed data points by

LGEV(β,α, γ )
(3.7)

=
m∏

i=1

exp
{
−

[
1 + γ

α
(xi − β)

]−1/γ

+

}
1

α

[
1 + γ

α
(xi − β)

]−1/γ−1

+
,

LPP(β,α, γ )
(3.8)

= exp
{
−NB

[
1 + γ

α
(u − β)

]−1/γ

+

} m∏
i=1

1

α

[
1 + γ

α
(xi − β)

]−1/γ−1

+
,

respectively, with {xi} representing realized block maxima and threshold ex-
ceedances in equations (3.7) and (3.8) respectively. To extend these likelihoods to
the 4 parameter case simply requires that u,xi are replaced by {uλ − 1}/λ, {xλ

i −
1}/λ, and that each term in the product is multiplied by the Jacobian xλ−1

i . In what
follows, reference to a ‘3 parameter model’ relates directly to traditional extreme
value models whose likelihoods are given by equations (3.7) and (3.8). Reference
to a ‘4 parameter model’ pertains to our extension.

Equations (3.4) and (3.6) represent our reparameterizations of θY in terms of a
new set of parameters {βX, logαX,γX,λ}. As the first three link clearly to infer-
ence for MX,n, this allows selection of good choices for parameter starting values
by commencing initially with a 3 parameter fit. In our algorithms vague Gaussian
priors (variance 10,000, centered on the estimates from the 3 parameter fit) and
Gaussian random walk sampling are used for βX, logαX,γX, and a uniform prior
with independent sampling for λ. The parameter range for λ is informed by in-
spection of the profile likelihood P
(γY , λ).

The algorithm includes the constraint that if λ < 0, γY < 0, since the former
implies a finite upper end point to the distribution, which is only the case when the
latter also holds. Furthermore, in the case λ < 0 this upper end point is {(xF )λ −
1}/λ ≤ −1/λ, thus, we also impose the constraint that the upper end point of the
fitted GEV is βY − αY /γY ≤ −1/λ.

It was found that setting NB ≈ m, the number of threshold exceedances, in equa-
tion (3.8) improved the mixing properties of the chain. This presents no major dif-
ficulties since the equations in (3.3) demonstrate how parameters corresponding
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to different numbers of assumed blocks are linked. A reason for improved mix-
ing under this adjustment is that for n total observations and m exceedances the
location parameter β becomes the 1 − m/n quantile of the true underlying distri-
bution FX . However, our fixed and known threshold u is the empirical estimate of
this quantile, hence, this choice orthogonalizes the relationship between β and the
other parameters.

The output of the MCMC leads to inference on return levels through posterior
distributions on specific quantiles, and via the posterior predictive distribution. The
1/p block return level, x1/p , which is the 1−p quantile of the distribution is found
via

x1/p = [λy1/p + 1]1/λ,(3.9)

where

y1/p = βY − αY

γY

[1 − {− log(1 − p)}−γY ].

The 1/p block posterior predictive return level, denoted x̂1/p , which corresponds
to the 1 − p quantile of the posterior predictive distribution for MX,n, is found by
numerically solving

P(MX,n ≤ x̂1/p|x) =
∫

P(MY,n ≤ {x̂λ
1/p − 1}/λ|θY )p(θY |x) dθY = 1 − p,

where x represents the realized data, either in block maxima or threshold excess
form. In practice, this is approximated through a discrete integral over the MCMC
output for θY .

4. Examples.

4.1. Simulated data examples. Two examples are presented. The first illus-
trates behavior when an exact extreme value distribution is recoverable through
a power transformation. The second presents the case of the normal distribution,
demonstrating the practical effect of the differing rates of convergence for trans-
formed and untransformed variables. For each example the burn-in period was
1000 iterations, with our reported analyses based on the subsequent 10,000 draws.

4.1.1. Pre-transformed extreme value model. Data were simulated from a
nonhomogeneous Poisson process with parameters {β,α, γ } = {15,1.5,−0.25}
and the threshold u was fixed by the parameters so that 	{(u,∞) × (0,1)} =
100,000. The data were generated on the basis of 1000 blocks, that is, taking NB
in (3.8) to be 1000. Three sub-samples of these data were analyzed:

1. Block maxima: 1000 maxima taken of blocks of length 100. These data are
exactly GEV(15,1.5,−0.25) distributed.
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FIG. 1. Transformed extreme value model example: posteriors for λ from (a) data set 1, prior range
[−2,3]; (b) data set 2, prior range [−2,8]; (c) data set 3, prior range [0,2].

2. Largest 1000 data: threshold selected to retain only the largest 1000 points.
Owing to the threshold stability property of the Poisson process, these still have
a PP(15,1.5,−0.25) distribution.

3. All data exceeding the smallest block maximum: threshold selected to be equal
to the minimum data point in data set 1. This gave 6847 data points. Again these
are PP(15,1.5,−0.25) distributed.

As a testing ground for the ability of the methodology to detect a ‘true’ value
of λ when one exists, a square transformation was pre-applied to data sets 1, 2
and 3, thus, they no longer followed the exact extreme value distributions from
which they were generated; these distributions being recoverable, up to location
and scale shifts, by taking λ = 0.5.

Figure 1 displays the posterior distributions for λ in each of the three scenarios.
The ranges of the uniform priors for λ are detailed in the caption. Modes around
λ = 0.5 are detectable in (a) and (c) (data sets 1 and 3), with the latter being much
the more concentrated density. The least information on λ is obtained from data
set 2. This is explained by the relative extremity of the data. The more extreme
the data, the more the standard asymptotic convergence arguments apply. That is,
with data set 2, in particular, the process is approximately Poisson regardless of
the transformation since we are still considering the largest 1% of a sample which
is in the domain of attraction of an extreme value distribution. Data set 3 contains
a larger amount of data, with the additional data being less extreme than that of
data set 2, thus producing the most informative posterior.

Figure 2 displays the pairwise empirical posteriors from the MCMC output. The
first two rows exhibit pairs from the new parameters {βX, log(αX), γX,λ}, while
the bottom two rows present the implied posteriors for the original parameter set
{βY ,αY , γY , λ}. It is clear from these figures that no meaningful inference could
be performed without the reparameterization.
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FIG. 2. Transformed extreme value model example: pairwise empirical posteriors for the new pa-
rameters {βX, logαX,γX,λ} (top two rows) and the implied posteriors for the original parameters
{βY ,αY , γY ,λ} (bottom two rows).

4.1.2. Normal distribution. The data simulated were 100,000 truncated (at 0)
N(0,1) variables, that is, such that FX(x) = 2�(x) − 1, x > 0. As in the example
of Section 4.1.1, three data sets were obtained from these:

1. Block maxima: 1000 block maxima taken over block length 100.
2. 1000 largest data points.
3. All data points above the smallest block maximum. There were 8066 such

points.
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FIG. 3. Truncated normal example: posteriors for λ, for (a) data set 1, prior range [−1,6]; (b) data
set 2, prior range [−3,15]; and (c) data set 3, prior range [0,3].

Figure 3 presents the posteriors for λ in each case. The pattern of infor-
mation contained on λ from each data set is similar to the previous example,
for the reasons formerly described. In Figure 3(a) there is a mode just below
λ = 2, in (c) the peak is around λ = 1.5. These values fit well with the the-
ory. The location normalizing constant for the truncated normal distribution is
bX,n ≈ (2 logn)1/2 − (1/2)× (2 logn)−1/2(logπ + log logn) ≈ 2.6 when n = 100.
At this sub-asymptotic level, the value of λ∗

n from (2.9), using the first four lead-
ing terms in hX/x and h′

X is 1.86. For the third data set we are at an even lower
asymptotic level. Here, replacing bX,n in the calculation with the threshold, 1.75,
gives λ∗

n = 1.48. Both of these agree with the evidence in the posterior for λ.
Figure 4 displays the relative return level summaries derived from the analysis,

with reference to the true return level curve calculated by solving {FX(x1/p)}100 =
1 − p. Posterior return level summaries are displayed pointwise, while the poste-
rior predictive distributions are given as curves. In Figures 4(a) and (c) it can be
observed that the 3 parameter model produces biased estimates of the return levels,
the true value falling far outside the posterior credible interval. In Figure 4(b) the
true value is just covered by the interval. These results are an indication of the very
slow convergence of the Normal distribution to the extreme value limit. From the
posteriors for λ there is certainly evidence that accelerated convergence is obtained
from the 4 parameter model. The bias in return level estimation compared to the 3
parameter case is reduced, but has not disappeared. The true values of the return
level lie within each of the credibility intervals for the 4 parameter models. This
is in part down to the faster convergence, although the extra uncertainty involved
plays a role as well.

4.2. Wave example. The data are measured significant wave heights (Hs ) for
an unnamed location in the North Sea. There were just over 33 years of measure-
ments available, with 8 measurements per day recording Hs over continuous 3
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FIG. 4. Truncated normal example: posterior and posterior predictive relative return level sum-
maries for (a) data set 1, (b) data set 2, (c) data set 3. The solid bold line at 1 is the reference
point for the true return level based on the truncated normal cdf; ‘3’, ‘4’ denote the relative poste-
rior median return levels of the 3 and 4 parameter models respectively; dashed/solid vertical lines:
3/4 parameter model 95% credibility interval; dashed/solid connected lines: 3/4 parameter model
posterior predictive return levels.

hour time periods. Our analysis is restricted to a single season to ensure approx-
imate stationarity, taking the winter period (13 weeks beginning on 1 December
each year), as this generally represents the period when almost all extreme events
arise. We again examined the data in three ways:
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FIG. 5. Hs data example: (a), (b), (c) profile log-likelihoods for {γY ,λ}, with contours at levels of
−1, −3, −5, −7, −12 below the maximum log-likelihood; (d), (e), (f) posteriors for λ for analyses
(i), (ii) and (iii) respectively. Prior ranges for λ taken as (i) [−1,4], (ii) [−2,15], (iii) [0,5].

(i) Weekly maxima, corresponding to a block size of 8 × 7 = 56 observations.
There were 433 data points in total.

(ii) Cluster maxima above an 80% threshold. Runs method declustering [Smith
and Weissman (1994)] was used, with a separation of 6 consecutive sub-
threshold values deemed to define a new cluster. There were 562 data points.

(iii) Cluster maxima above an 60% threshold, using the same declustering proce-
dure as in (ii). There were 618 data points.

In each case both the usual 3 parameter model and the appropriate proposed 4
parameter model [GEV for (i), point process for (ii) and (iii)] were fitted. Our
analyses are again based on 10,000 MCMC samples following a 1000 iteration
burn-in period. Figure 5 displays the profile likelihoods for {γY ,λ} and the poste-
rior distributions of λ in each scenario. As with the simulated data, there is more
information on λ for less extreme data, as evidenced by plots (d) and (f) com-
pared with (e). It is interesting to note that for the 4 parameter GEV model, the
slope c in expression (3.6) was estimated as 0.23, showing how the parameteriza-
tion (3.6) ties in with the different shape parameters for Hs (γ̂X = −0.12) and H 2

s

(γ̂X = 0.11) mentioned in Section 1: 0.11 = −0.12 + 0.23 × (2 − 1).
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FIG. 6. Hs data example: QQ plots for (a), (c), (e) 4 parameter model, (b), (d), (f) 3 parameter
model for analyses (i), (ii) and (iii) respectively. Dashed lines represent a 95% pointwise credible
interval, formed from the central 95% of the posterior distribution for each quantile.

Figure 6 displays QQ plots for each of the fits; here the ‘fitted’ quantile is de-
fined to be the median of the pointwise quantile posterior distributions, that is, the
median of x1/p , for x1/p given by (3.9). Each of the fits appears reasonable, and
considering that λ = 1 is plausible under each of the posteriors, this is perhaps not
too surprising. However, in each case, there is some evidence that the very upper
tail is modeled slightly better by the 4 parameter model.

Posterior summaries of the return levels from analysis (iii) are displayed in Fig-
ure 7, where increasing disparity of estimates with lengthening return period can
be observed. The corresponding plots for analyses (i) and (ii) have been omitted
for clarity, but show similar general trends with greater uncertainty for analysis (ii)
and lesser for analysis (i). In particular, observe that the medians of the posterior
return level distribution for the 100 and 1000 winter return periods under the 4
parameter model lie into the upper tail of the same distributions under the 3 pa-
rameter model. From the motivating example in Section 1 it is clear why these
discrepancies occur: the Hs data were estimated as light-tailed, with a statistically
significant negative shape parameter (taking a 5% significance level); the H 2

s data
were estimated to be heavy-tailed, with a statistically significant positive shape
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FIG. 7. Hs data example: posterior and posterior predictive return level summaries for Hs , based
on both 3 and 4 parameter models for analysis (iii). Symbols and line types as in Figure 4.

parameter. Such different tail behavior will naturally lead us to different conclu-
sions. The posteriors for λ show that we might reasonably extrapolate on either
scale, among other possibilites; the 4 parameter model combines all such plausible
scenarios to build up what would appear to be a more accurate assessment of the
uncertainty associated with these extrapolations.

5. Discussion. The paper has presented a parametric method for incorporat-
ing the uncertainty surrounding the scale of extrapolation in extreme value analy-
sis. Reparameterizations which allow inference under the model have been de-
rived, justified by the theory of normalizing constants for the limiting distribution
of block maxima. Examples have demonstrated the ability of the methodology to
detect the ‘true’ value of λ where one exists, for the case of finite block size/sub-
asymptotic threshold. As either the block size tends to infinity or the threshold to
the upper end point, information on λ decreases, since there is little to be gained
from a transformation.

The fact that there may not always be significant information on λ poses the
question whether it is always necessary to incorporate this uncertainty. In Theo-
rem 1 we noted that in the case where ξX ≤ 0 with xF > 0, the shape parameters
ξY,n → ξX as the data become more extreme, since limx→xF hX(x)/x = 0. In such
a case, where all our data are far into the upper tail, the mean squared error of the 4
parameter model is likely to exceed that of the 3 parameter case. An ill-determined
posterior for λ may be one indication that utilization of this method adds an unnec-
essary degree of uncertainty. If the variance of the posterior seems unacceptably
large, then the suggestion would be that the data do not contain information on λ,

in which case the practitioner may consider not using this method.
At the other end of the scale, the fact that suitable values of λ may accelerate

convergence offers the potential for incorporating more data through lowering of
the threshold or contracting of block length. Although we have not specifically
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explored this here, examples such as the normal data example given in Section 4
demonstrate how this could be worthwhile. Because QQ plots such as those in
Figure 6 are easily obtained under both 3 and 4 parameter models, the modeler
should be able to determine if there is value in doing this.

A natural question that arises is whether to consider fixing λ if there is strong
evidence for a particular value in the posterior. As outlined in Section 2, there are
cases where a specific value will accelerate convergence, thus, one could assume
that the modal value is a suitable one to take. However, the reason that we have
a full posterior distribution is that there is genuine uncertainty in this value. Ar-
guably, therefore we mitigate against our errors by keeping this uncertainty. This
seems unsatisfying in a world where we value precision in our estimates, but if
uncertainty genuinely exists, it should not be masked by the pursuit of false preci-
sion.

The Box–Cox class of transformations is suitable only for strictly positive data.
In the event that interest lies in a data set for which this is not the case, a location
shift prior to analysis would be necessary. One might also in such a case consider
different classes of transformation. Cormann and Reiss (2009), for example, con-
sider exponential transforms. From our proof in the Appendix it is simple to derive
reparameterizations for any monotonic transformation, thus, one could exploit this
theory in other contexts.

APPENDIX: PROOF OF THEOREM 1

Denote the transformation y(x) = {xλ − 1}/λ and the inverse transformation
x(y) = {λy + 1}1/λ. The distribution function FY is given by

FY (y) = P(Y ≤ y) = P(X ≤ {λy + 1}1/λ) = FX({λy + 1}1/λ) = FX(x(y)).

Therefore, solving FY (bY,n) = 1 − 1/n for bY,n yields

FX({λbY,n + 1}1/λ) = 1 − 1/n,

{λbY,n + 1}1/λ = F−1
X (1 − 1/n) = bX,n,

bY,n = bλ
X,n − 1

λ
.

Denote the Jacobian of the transformation and inverse transformation by

JX(x) :=
∣∣∣∣dy

dx

∣∣∣∣ = xλ−1, JY (y) :=
∣∣∣∣dx

dy

∣∣∣∣ = {λy + 1}1/λ−1.

These are linked by JY (y) = {JX(x(y))}−1. The reciprocal hazard function hY is

hY (y) = 1 − FY (y)

fY (y)
= 1 − FX(x(y))

fX(x(y))JY (y)
= hX(x(y))

JY (y)
,
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which gives

aY,n = hY (bY,n) = hX({λbY,n + 1}1/λ)

{λbY,n + 1}1/λ−1 = hX(bX,n)

(bX,n)1−λ
= aX,n(bX,n)

λ−1.

To obtain an expression for the shape parameter, we require the derivative of the
reciprocal hazard function for Y ,

h′
Y (y) = d

dy

{
hX(x(y))

JY (y)

}

=
(
JY (y)

d

dy
hX(x(y)) − hX(x(y))

d

dy
JY (y)

)/
JY (y)2.

By the chain rule,

d

dy
hX(x(y)) = JY (y)h′

X(x(y))

and

J ′
Y (y) = JY (y)

d

dx

1

JX(x(y))
= − J ′

X(x(y))

JX(x(y))3 .

Thus,

h′
Y (y) = JY (y)2h′

X(x(y))

JY (y)2 − hX(x(y))J ′
Y (y)

JY (y)2

= h′
X(x(y)) + hX(x(y))

J ′
X(x(y))

JX(x(y))
.

Substituting in JX(x) = xλ−1, J ′
X(x) = (λ − 1)xλ−2 results in

h′
Y (y(x)) = h′

X(x) + hX(x)

x
(λ − 1).

Substituting in x = bX,n gives (2.5); taking the limit as x → xF gives (2.4).
For the final statement, ξX = limx→xF h′

X(x) ≤ 0 implies that limx→xF hX(x)/

x = 0.
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