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Abstract 
There are numerous studies demonstrating that people’s 
judgments about meanings of words can sometimes derive 
from their sound – a phenomenon often referred to as 
sound symbolism. A recent comprehensive assessment of 
English demonstrates that some small amount of 
systematicity exists between form and meaning. Is this 
small level of systematicity in language sufficient to drive 
the observed behavioral effects of sound symbolism? In 
this study we first tested the extent to which similarities 
amongst the sounds of words was sufficient to drive sound 
symbolic effects. We then tested whether a computational 
model that learned to map between form and meaning of 
English words better accounted for the observed behavior. 
We found that phonological similarity alone was sufficient 
to account for several effects of sound symbolism (without 
reference to meaning at all), but that the form-meaning 
mapping model was able to reproduce additional key 
behavioral effects of sound symbolism. 

Keywords: form-meaning mappings, arbitrariness of the 
sign, brand names, word learning. 

Introduction 
The sound of a word bears an arbitrary relationship to its 
meaning, such that the phonological properties of the 
word generally carry no information about its intended 
meaning (de Saussure, 1916; Hockett, 1960). 
Arbitrariness in language provides a host of potential 
advantages for communication: It permits the speaker and 
listener to extract themselves from the immediate 
situation, allowing language to express concepts distant in 
space and time, as well as hierarchical, abstract 
relationships (Clark, 1998); arbitrariness promotes 
learnability, in that acquisition of a new form-meaning 
relationship is not constrained by previous learning 
(Gasser, Sethuraman, & Hockema, 2010) and also ensures 
that the amount of information present in the environment 
for learning, and communicating the mapping is 
maximized (Monaghan, Christiansen, & Fitneva, 2011); 
arbitrariness enables direct mapping from word to 
concept, which iconic symbols do not (Lupyan & 
Thompson-Schill, 2012); finally, arbitrariness ensures that 
duality of patterning – where the relationships between 
phonemes constitute a word, and then the relationships 

between words constitute meaning, independent of those 
phonemes – is sustained. 

Yet, there are very many apparent exceptions to the rule 
of arbitrariness observed in spoken language. Morphology 
carries information about form-meaning mappings at a 
grammatical category level – even in languages with such 
impoverished systems of morphology as English, there 
are indicators in the spoken word about the general 
syntactic role of a word, in turn supporting inferences 
about semantic properties (Seidenberg & Gonnerman, 
2000: Monaghan, Chater & Christiansen, 2005). 
Furthermore, there are many instances of sound-meaning 
relationships (Hinton, Nichols, & Ohala, 1994), such as 
phonoaesthemes (certain phonological clusters relating to 
meaning, e.g., for English, spr- relates to fast movement, 
or –ump relates to roundedness). Such phonoaesthemes 
have been shown to be significantly expressed in corpora 
of English (Otis & Sagi, 2008), and have processing 
consequences in word reading (Bergen, 2004). Given 
these mixed messages available from the literature, it is 
unclear precisely how arbitrary language is. 

In a recent corpus analysis, Monaghan Shillcock, 
Christiansen & Kirby (2014) provided a first 
comprehensive assessment of the extent to which form 
and meaning is systematic or arbitrary in the vocabulary 
of English. They correlated the similarities between words 
in terms of their phonological form and determined the 
extent to which those phonological distances could 
predict distances in meaning space, where meaning was 
derived from two alternative representations. The first 
semantic representation was constructed on the basis of 
contextual co-occurrence vectors, similar to Latent 
Semantic Analysis (Landauer, Foltz, & Laham, 1998). 
The second was based on semantic features derived from 
WordNet (Miller, 1990). Both types of semantic 
representation resulted in significant but very small 
amounts of systematicity between form and meaning, 
even when morphology and etymology was controlled. 

The actual systematicity between form and meaning is 
very small indeed, and, though intellectually intriguing, 
the small amounts of variance accounted for in the 
semantics by the phonology may be practically 
unimportant. However, studies of semantic attributes 



related to nonwords have typically adopted a forced-
choice design, and this forced-choice may be sufficient to 
pick up on very subtle distinctions in semantic priming 
from sound. 

One of the most famous examples of sound symbolism 
is the relationship between speech sounds and shape. 
Köhler (1929) showed participants two shapes – a 
rounded and a spikey object, and asked them which of the 
two nonwords kiki and bouba related to which object. In 
this frequently replicated study (see, e.g., Ramachandran 
& Hubbard, 2001; Maurer, Pathman, & Mondloch, 2006), 
participants typically map kiki to the angular object and 
bouba to the rounded object. In terms of the phonological 
properties of the nonwords, studies have demonstrated 
that both the phonological features of the vowel as well as 
of the consonants contribute to the effect (Monaghan, 
Mattock, & Walker, 2012; Nielsen & Rendall, 2013).  

Such sound influences on meaning appear to generalize 
to numerous semantic attributes. In a series of studies on 
brand name choices, Klink has shown that nonwords 
varying in consonant and vowel properties relate to a 
whole range of brand decisions (Klink, 2000, 2003; Klink 
& Wu, 2013). In his most comprehensive study, Klink 
(2000) tested a small set of nonwords that varied in terms 
of whether they contained fricative or stop consonants, 
voiced or unvoiced consonants, or front or back vowels. 
A small set of nonwords that manipulated each of these 
phonological features was tested for the extent to which 
participants judged the nonword to be an appropriate 
brand name for promoting a variety of semantic attributes 
in a questionnaire study.  

Klink (2000) found that nonwords containing front 
vowels were judged to be smaller, lighter, milder, thinner, 
softer, faster, colder, more bitter, more feminine, 
friendlier, weaker, and prettier than nonwords containing 
back vowels (e.g., detal versus dutal). He also found that 
fricatives were smaller, faster, more feminine and lighter 
than plosives (e.g., fazz versus kazz), and that unvoiced 
consonants were smaller, softer, faster, more feminine, 
lighter, and sharper than voiced consonants (e.g., faruck 
versus varuck). 

Insofar as there exists some systematicity between 
certain sounds and certain semantic dimensions in 
English, a model that is trained to map between 
phonological and semantic representations of English 
vocabulary should be able to account for the meanings 
people attribute to various nonwords. 

A further advantage of the computational model is that 
it permits testing of various phonological properties of 
words simultaneously, rather than measuring vowels or 
consonants features separately. In Klink’s (2000) studies, 
he tested vowel position by contrasting nonwords 
containing the letters i and e (front) from those containing 
o and u (back).  However, these vowels differ not only in 
position but also in height (high and low, respectively). 
Furthermore, Klink tested fricatives versus plosives by a 
comparison conflating unvoiced fricatives and voiced 

plosives, so several the stimuli differed on two 
dimensions. In addition, the combinations of certain 
consonants and vowels may drive participants’ judgments 
rather than the individual properties of vowels or 
consonants. There are practical constraints in testing a 
large set of nonwords in behavioral studies, but ensuring 
that effects are generalizable is possible in a 
computational model tested on a large set of stimuli, 
which is not possible with behavioral studies. Thus, we 
investigated the simultaneous contribution of consonant 
manner and voicing and vowel position and height for 
their relationship to different semantic attributes. 

However, the model results have to be considered in 
terms of whether observed behavioral effects are due to 
regularities in the form-meaning mappings, or whether 
they are due to other uncontrolled contributions to 
decisions about meaning of nonwords. One possibility is 
that the effects may just be due to phonological similarity 
between nonwords and the meaning of known words. If 
this is so, then behavioral effects could be captured by 
assessing the similarity between the phonology of 
nonwords and the phonology of semantic attributes 
directly, without any role of semantics in participants’ 
decisions. We first describe how we assessed 
phonological similarity effects before presenting the 
model of form-meaning mappings. 

Determining phonological similarity effects 
Some observed effects of sound symbolism, in behavioral 
as well as computational studies, may be due, not to the 
systematicity that exists between form and meaning, but 
rather to analogies between the sound of the attribute 
word and the nonword being assessed. In experimental 
studies of the effect of sound symbolism nonword stimuli 
are sometimes, but by no means always, controlled for the 
extent to which they remind participants of existing 
words. In Klink’s (2000) studies, for instance, stimuli that 
reminded participants of words were not used in the main 
study. However, the extent to which implicit associations 
between sounds of nonwords and sounds of attribute 
words may still be affecting performance. For example, 
asking participants about the extent to which a nonword 
elicits the attribute cold may be influenced by whether or 
not the nonword contains a plosive. If it does then it may 
resonate with the /k/ in the onset of cold, whereas if the 
nonword does not contain a plosive then it may be judged 
to be distinct, again solely based on comparisons in sound 
similarity. 

Materials 
In order to investigate the effects of phonological 
similarity on judgments about meaning, a corpus of 
nonwords was generated. We would have liked to have 
employed the precise materials from previous 
experimental studies of attribute selection from nonwords. 
However, these were unsuitable for our analyses, 
primarily because they tended to use polysyllabic words 



which are not available in the training set for the 
phonology to semantics model reported below, but also 
because the word sets were small – the power from these 
previous studies derives from the large number of 
participants used in the studies. Thus, we required a large 
set of nonwords to be tested, which would be impractical 
in a behavioral study but possible in a modeling context.  

To create a large set of nonwords, all the single 
fricative/plosive onsets, vowels, and single phoneme 
codas from the set of 6229 words used to train the form-
meaning model (see below) were selected. Then, these 
were joined together to form a candidate set of nonwords. 
These were then pruned by detecting any of the CVC 
sequences that were actual words, which were then 
omitted. This resulted in 2142 nonwords.  

Each nonword was encoded for analysis in terms of its 
phonological properties. The manner of articulation 
(plosive or fricative) of the onset consonant, and whether 
the onset consonant was voiced or unvoiced were 
recorded. For the vowel, the position (front/back) and 
height (close/open) were recorded. Nonwords with close-
mid, or open-mid vowels were classified as close and 
open, respectively. The characteristics of the nonwords 
are shown in Table 1. 

 
Table 1: Number of nonwords with each phonological 

property. 
 Manner Voicing 

Consonants Plosive  Fricative  Voiced Unvoiced 
 682  1460  1061 1081 
      

Vowels    Position      Height        
 Front Back Close Open  
 1473 669 1541 601  

 
Attributes were taken from the set used by Klink (2000, 

2003), with antonym pairs derived for each attribute. Only 
antonym pairs that were both monosyllabic were included 
in the analysis. The derived pairs, corresponding to the 
original attributes used by Klink (2000) were: small-large, 
light-dark, mild-harsh, thin-thick, soft-hard, fast-slow, 
cold-warm, weak-strong, and sharp-blunt.  

Testing 
In order to determine the effect of phonological similarity, 
we measured the edit distance between the phonology of 
each nonword and each pair of attribute words, such that 
small values indicate the nonword was similar to the 
attribute word’s phonology, and larger values indicate 
greater distinctiveness in the sound (see Monaghan, 
Christiansen, Farmer, & Fitneva, 2010, for discussion of 
this and similar measures of phonological similarity). 
Differences between the phonological similarity for each 
nonword and each antonym pair of attributes were entered 
as the dependent variable into the analysis. 

To determine the effect of form-meaning mappings on 
judgments about semantic properties of nonwords, we 

next constructed a model that learned to map between 
phonology and semantics for a large set of English words. 

Modeling form-meaning mappings 

Architecture 
The model was an extract of the connectionist triangle 
model developed by Harm and Seidenberg (2004). We 
implemented only one pathway from their model: the 
mapping from phonological input to semantic output. The 
model is shown in Figure 1. At input the model had 8 
slots, and each slot contained 25 units to represent each 
phoneme. The input phonology layer was fully connected 
to a set of 1000 hidden units, which were in turn fully 
connected to an output semantic layer comprising 2446 
units. The output semantic layer was connected to and 
from a set of 50 “cleanup” units which assisted in 
increasing the fidelity of the output semantic 
representation. The model differed from that of Harm and 
Seidenberg’s (2004) model only in terms of the number of 
hidden units – the original model contained 500 hidden 
units, but we found in pilot simulations that this was 
inadequate for accurate learning. 

 
Figure 1: Model of form-meaning mappings. 

Training 
The model was trained on 6229 monosyllabic words. 
Phonology for each word was represented by 25 binary 
phonological features for each phoneme. There were 3 
slots for the onset consonants, one slot for the vowel 
(diphthongs were represented in terms of a single vowel), 
and 4 slots for the coda consonants. Phonemes were 
always adjacent to the vowel, so that, if the word 
contained one onset consonant, that consonant occurred in 
the third slot for the word, and if the word contained two 
onset consonants, then those occupied the second and 
third slot. 

For the semantic representations, words were encoded 
in terms of semantic features, derived from WordNet 
(Miller, 1990). Each word activated a subset of the 2446 
features, and the target representation for each word in 
terms of semantic features was binary. Use of this 



semantic representation was appropriate in order to test 
the extent to which small amounts of systematicity in 
form-meaning mappings may drive behavioral judgments 
about semantic attributes of nonwords, because 
Monaghan et al. (submitted) tested exactly these semantic 
features in their corpus analysis. 

The model was trained by randomly sampling words 
according to square root compression of frequency taken 
from the Wall Street Journal corpus (Marcus, Santorini, & 
Marcinkiewicz, 1993), presenting the phonological 
representation for the word at input, and requiring the 
model to learn to produce the semantic representation at 
the output, using the continuous recurrent 
backpropagation learning rule (Harm & Seidenberg, 
2004). The model had 12 time steps in order to generate 
the semantics, at which point error was propagated 
through the network according to the cross-entropy of the 
difference between the target and actual semantic layer 
activations for that word. The learning rate was 0.2. 

After 5M patterns, the model had reached asymptote in 
learning to produce the correct semantic output for 94.3% 
of the words, and we proceeded to test the model. Of the 
errors made by the model, they were generally low 
frequency words that were not effectively learned where 
no relationship between phonological or semantic form 
could be discerned, together with a small number of 
phonological errors (e.g., deigned → deign, seize → sea) 
and a small number of semantic errors (e.g., beers → ales, 
dross → waste). 

Testing 
In order to determine that the model was able to learn to 
map between phonology and semantics for the words in 
the training set, we determined for each word whether the 
output semantic representation was closer to the target 
semantic representation than to the semantics of any other 
word. Several words in the dataset were homophones 
(e.g., beet, beat), and if the word activated a semantic 
representation that was consistent with the phonology 
then this was also accepted as accurate. 

The same set of nonwords, as described in Table 1, 
were presented to the model, and the output activations 
across the semantic layer were recorded. The semantic 
output for the nonword was compared against the target 
vector for the same set of semantic attributes as were 
tested in the phonological similarity analyses, using 
cosine distance. Differences between the cosine distance 
for the nonword and each word in the semantic attribute 
antonym pair was taken, and the difference scores were 
entered as the dependent variable into the analysis. 

Results 
We first report the results of the phonological analogical 
similarity for the extent to which they can account for the 
behavioral effects, before testing the form-meaning 
mapping model against the behavioral results. Finally, we 
report the effects of the form-meaning mapping model on 

the nonwords predicting preferences for semantic 
attributes when the phonological similarity effects are 
partialled out. 

Phonological similarity effects 
We ran linear mixed effects models using restricted 
maximum likelihood for difference scores for each 
attribute, with nonword as random factor, and vowel 
position, manner of the onset (fricative/plosive), and 
voicing of the onset as fixed factors. The dependent 
variable was the difference between the phonological 
similarity between each nonword and each semantic 
attribute antonym pair.  

The results are shown in Table 2, which shows all the 
significant effects (p < .05) for each of the semantic 
attributes. In the results tables, bold indicates that the 
effect is significant and consistent with Klink (2000), gray 
indicates a significant effect in Klink (2000) and 
consistent but not significant effect in the model. * 
indicates an effect in Klink (2000) contradicted by the 
model, and normal font indicates a comparison not tested 
directly in the behavioral study, but significant in the 
model. 

 
Table 2: Summary of the effects of phonological 

analogical similarity for comparisons of antonym pairs. 
 
Attribute 

Vowel 
position 

Manner Voicing Vowel 
height 

Smaller front fricative unvoiced  
Lighter front fricative unvoiced  
Milder front    
Thinner front    
Softer front  unvoiced  
Faster front fricative unvoiced open 
Colder front    
Weaker front   close 
Sharper   unvoiced  
    
The results demonstrate that several of the sound 
symbolic semantic attributes reported in the behavioral 
literature may be due to similarity in terms of just the 
sound of nonwords and the attributes being assessed. This 
was particularly true of the properties of the consonants, 
where two of the three attributes associated with manner 
of articulation, and three of the five voicing effects, were 
replicated in the phonological similarity results. Only one 
of the eight vowel position effects was found to be 
significant in the phonological similarity results. 
However, vowel height was also found to be differently 
distributed in terms of phonological similarity for several 
of the semantic attribute antonym pairs. 

Phonology to semantics effects in the model 
The same linear mixed effects analyses as were applied to 
the phonological analogical results were tested on the 
output of the form-meaning mapping model. Table 3 
reports all the significant effects (p < .05) resulting from 



the mixed models analyses, with the direction of the effect 
illustrated. For example, from the first row of the Table, 
for manner of the consonant onset, fricatives related more 
closely to the attribute small than to the attribute large, in 
comparison with plosives. Similarly unvoiced onset 
consonants related more closely to small than large, in 
comparison with voiced onset consonants. In addition, 
closed vowels related more closely to small than large, 
compared to open vowels.  

As with the phonological similarity effects, several of 
the behavioral effects from Klink (2000) were replicated 
in the form-meaning mapping model, with particularly 
strong effects of vowel position, as well as vowel height, 
though not all effects were in the same direction as the 
behavioral observations. 
 

Table 3: Summary of the effects of the phonology to 
semantics computational model for comparisons of 
antonym pairs. 
 
Attribute 

Vowel 
position 

Manner Voicing Vowel 
height 

Smaller front fricative unvoiced closed 
Lighter front* fricative unvoiced open 
Milder front   closed 
Thinner front   open 
Softer front*  unvoiced  
Faster front* fricative unvoiced open 
Colder front    
Weaker front*   open 
Sharper   unvoiced  
 

Table 4: Effects of the phonology to semantics 
computational model with phonological similarity as a 
covariate. 
 
Attribute 

Vowel 
position 

Manner Voicing Vowel 
height 

Smaller front fricative unvoiced  
Lighter front* fricative unvoiced open 
Milder front   close 
Thinner front    
Softer front*  unvoiced  
Faster front fricative unvoiced close 
Colder front    
Weaker front*   open 
Sharper   unvoiced  

Phonology to semantics without phonological 
similarity effects  
The final analyses tested the effects of the form-meaning 
mappings when the phonological similarity between 
nonwords and attributes was accounted for. This 
simulates the assumption in the study that participants are 
not influenced by the particular phonological similarity 
between a nonword and the given semantic attribute. 

The same linear mixed effects models were run as 
before with vowel position, vowel height, consonant 
manner and consonant voicing as factors and the 

difference between the form-meaning mapping semantic 
activation related to each semantic antonym pair as the 
dependent variable, except with the addition of the 
difference in the phonological analogical similarity 
between the nonword and each pair of semantic antonyms 
as a covariate. The results are shown in Table 4. 

Removing the effect of phonological similarity from the 
analyses enhanced the match between the computational 
model’s results and the behavioral studies for the vowels 
– 5 of the 8 attributes were now aligned with the 
behavioral studies. However, the effects for consonants 
were weaker. 

Discussion 
There is a modicum of systematicity between form and 
meaning in the vocabulary of English. This paper aimed 
to determine whether capturing this systematicity in a 
model trained to map between form and meaning for a 
large set of English words was able to reproduce 
behavioral studies of apparent sound symbolic effects, 
where certain phonological features of nonwords affected 
judgments about a range of semantic attributes. 

We first tested the extent to which similarities within 
the phonological forms of words alone could explain the 
behavioral effects. These analyses demonstrated that this 
was the case for many of the relationships between 
properties of consonants and semantic attributes. 
However, effects associated with the phonological 
features of vowels were not effectively simulated just by 
computing phonological similarity. Hence, sound 
symbolic effects are not due only to phonology.  

Rather, several of the behavioral effects of the 
properties of vowels were reproduced only when the 
form-meaning regularities were taken into account in the 
simulations. Furthermore, determining the pure effect of 
the sound-meaning mappings, when the phonological 
similarity was partialled out of the analyses, resulted in 
the best fit between the behavioral and the modeling 
effects. 

However, not all of the sound symbolic effects were 
predictable from our analyses. This could be either 
because the modeling did not accurately represent the 
psycholinguistic properties of the phonological or 
semantic similarity, or because these effects are due to 
sound symbolic decisions that are not encapsulated within 
the structure of the language. Using WordNet semantic 
features to represent semantic similarity is certainly 
imprecise, but this is more likely to result in an absence of 
effect, whereas some of the observed effects are reverse to 
the behavioral studies. Intriguingly, participants have to 
suppress the regularities within the language (as exhibited 
by the model) in order to make their decisions.  

A further alternative, highlighted by the computational 
modeling presented here, is that combinations of 
phonological properties of nonwords may be driving 
decisions in sound symbolism studies. The modeling 
results show that there are many regularities in vowel 



height, as well as vowel position, that correspond to 
semantic distinctions, which have not yet been appraised 
in behavioral studies, and yet are conflated in the design 
of these studies. Furthermore, the properties of the 
nonwords’ codas have not yet been systematically 
assessed, either in behavioral or our computational 
studies. This is a further likely source of influence on 
semantic judgments which merits further investigation. 
We do know, for instance, that vowels in first versus 
second syllables of a nonword affect performance 
differently (Klink & Wu, 2013). Thus, it is likely that 
further subtle patterns of interactions between 
phonological properties are the likely drivers of effects.  

Our computational framework presented here provides 
a starting point for generating predictions about complex 
interactions between phonological properties resulting in 
sound symbolism decisions. We have shown that 
consideration of phonological similarity alone, as well as 
pure measures of form-meaning systematicity, are able to 
predict a range of behavioral studies of sound symbolic 
judgments. Testing the interactions in the computational 
model, rather than only, as we have so far done, testing 
main effects of individual phonological properties, will 
enable us to uncover the potent complexity of the 
systematicity of the sign. 
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