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Abstract 

Recent empirical evidence suggests that language-mediated 
eye gaze is partly determined by level of formal literacy 
training. Huettig, Singh and Mishra (2011) showed that high-
literate individuals' eye gaze was closely time locked to 
phonological overlap between a spoken target word and items 
presented in a visual display. In contrast, low-literate 
individuals' eye gaze was not related to phonological overlap, 
but was instead strongly influenced by semantic relationships 
between items. Our present study tests the hypothesis that this 
behavior is an emergent property of an increased ability to 
extract phonological structure from the speech signal, as in 
the case of high-literates, with low-literates more reliant on 
more coarse grained structure. This hypothesis was tested 
using a neural network model, that integrates linguistic 
information extracted from the speech signal with visual and 
semantic information within a central resource. We 
demonstrate that contrasts in fixation behavior similar to those 
observed between high and low literates emerge when models 
are trained on speech signals of contrasting granularity. 

Keywords: The Visual World Paradigm, Connectionist 
Modeling, Visual Attention, Literacy. 

Introduction 

Eye-tracking studies in which participants are presented 

simultaneously with spoken language and visual input (i.e. 

the visual world paradigm, Tanenhaus et al., 1995) have 

shown that information retrieved via both modalities is 

mapped at multiple levels of representation. Allopenna et al. 

(1998), for instance, presented participants with spoken 

words such as beaker and objects whose names contained 

word-initial or word-final overlapping phonological 

information (e.g., beetle, speaker) together with 

phonologically unrelated objects (e.g., carriage). They found 

that eye-movements were more likely to be directed to the 

phonologically related objects than to unrelated objects, 

indicating that during speech processing, phonologically 

related representations were co-activated and mapped onto 

phonological representations retrieved from viewing the co-

present visual objects (see Huettig & McQueen, 2007, for 

further discussion). Related paradigms have demonstrated 

that semantic competitors are also co-activated during 

listening to speech and attract increased overt attention (Yee 

& Sedivy, 2006; Huettig & Altmann, 2005)  

These types of studies leave open one important question: 

What particular aspects of these representations affect 

participants’ performance? Computational models have 

been proposed to reproduce the individual phonological and 

semantic effects on word processing. Allopenna et al. 

(1998), demonstrated that fixation probabilities during 

spoken word processing can be predicted by lexical 

activations in the TRACE model of spoken word 

recognition. Mayberry, Crocker and Knoeferle (2009) and 

Kukona and Tabor (2011) extended this work to predict 

fixation behavior during sentence processing from the 

integration of visual and linguistic information. Until 

recently, such models that simulate the interaction between 

visual and linguistic information did so with representations 

that were unable to capture fine-grained semantic, 

phonological or visual feature relationships and were 

therefore limited in their ability to examine effects of 

multimodal interactions in language processing. A recent 

model by Smith, Monaghan and Huettig (in press) based on 

the hub-and-spoke models of semantic processing which 

integrates visual, phonological and functional information 

within a central resource, replicated the intricate time course 

dynamics of eye fixation behavior reported in Huettig and 

McQueen (2007). The model highlights the role of 

differences in the computational properties of each 

modality’s representational structure, demonstrating that 

such differences are sufficient to produce behavior 

consistent with multimodal effects reported in the Visual 

World Paradigm. 

The question of how differential representational qualities 

of phonological and semantic properties affect word 

processing can also be approached by studying individual 

differences. Specifically studying participant populations 

that differ in the form of representation of each modality 

that they bring to the task. People with different levels of 

literacy are a critically important population in this regard. 

There is a well-established link between fidelity of 

phonological representations of words and development of 



 

 

literacy (Hulme et al., 2012). Participants who are literate 

perform better at phonological segmentation or phoneme 

awareness tasks (Bowey, 2005), and there have been 

proposals both that literacy causes such improvements in 

phonological processing (Castles & Coltheart, 2004; 

Morais, Cary, Alegria, & Bertelson, 1979), as well as 

converse views that effective phonological processing 

results in improved reading (Muter, Hulme, Snowling, & 

Stevenson, 2004). An influential processing model in this 

literature is that experience of written forms of words results 

in a change in the granularity of the phonological processing 

of a word (Ziegler & Goswami, 2005), such that exposure to 

written words results in greater awareness of the individual 

phonemes of words, and without such exposure, listeners 

are more likely to process the sound of a word without a 

componential, phonological decoding.  

In contrast, effects of literacy on semantic processing 

have been shown to be minimal and appear to be only 

quantitatively rather than qualitatively different (Da Silva et 

al., 2004; Reis & Castro-Caldas, 1997). Thus, literacy 

appears to affect lexical processing in a modality-specific 

manner.  

In a recent study, Huettig, Singh and Mishra (2011) 

compared phonological and semantic competitor effects for 

Indian participants who had high and low levels of literacy 

due to poverty or other socioeconomic factors (but no 

known neurological or cognitive deficits), enabling a direct 

test of the extent to which the granularity of the 

phonological form of a word affects performance. In their 

study (Experiment 1), participants viewed a scene 

comprising objects representing a phonological onset 

competitor, a semantic competitor, and two unrelated 

distractors, and heard the target word spoken in a sentence 

context. They found that participants with low levels of 

literacy demonstrated no effects of phonological 

competitors, but substantial effects of semantic competitors 

when hearing words. In contrast, the participants with high 

levels of literacy were similar to the participants in a similar 

study with Dutch high literates (Huettig and McQueen, 

2007) – demonstrating early looks towards objects named 

by phonological competitors and later looks toward 

semantic competitors. 

We note that looks to the semantic competitors in the 

Huettig et al. (2011) study were reduced for the low literacy 

group, which is consistent with accounts of a general 

processing deficit (cf. Salthouse, 1996), and we return to 

this issue in the Discussion section. 

We adapted our previous multi-modal model of fixation 

behavior in the visual world paradigm (Smith, Monaghan, & 

Huettig, in press) to test the explanatory adequacy of the 

hypothesis regarding granularity of phonological processing 

relating to different levels of literacy. We simulated the 

conditions of the experimental study by presenting visual 

object representations of phonological and semantic 

competitors, and two unrelated words and tracking the 

model’s fixation of each of these objects as presentation of a 

target word unfolded. We adjusted the level of granularity 

of the auditory presentation of the word to the model, 

predicting that a segmented phonological representation 

would result in early phonological competitor effects, but 

that less individuated phonological representations, 

consistent with accounts of phoneme awareness impairment 

in low-literacy groups, would result in reduced, or absent 

phonological effects. We also predicted that, consistent with 

the behavioural data, the later semantic competitor effects 

would be observed for the model regardless of the 

granularity of the auditory input to the model. 

In order to isolate the effect of the granularity of auditory 

processing of the spoken word, we controlled for the overall 

similarity between words in terms of their auditory form, 

but varied whether the similarity was compositional and at 

the phoneme level within the model, whether it was 

sublexical but not at the phonological level, or whether it 

was not sublexical and represented only at the word level. 

Method 

Model 

The models described in this paper are based on the model 

of language mediated eye-gaze presented in Smith, 

Monaghan and Huettig (in press). The general architecture 

of the model is shown in Figure 1. 

 

 
 

Figure 1: Network Architecture. 

 

Architecture The network consists of four modality-

specific layers which were fully connected to a central 

resource consisting of 400 units (see Figure 1). The model 

implements a hub-and-spokes model of multimodal 

integration, with input visual, auditory and semantic 

information about words, and output behavior of an “eye” 

layer which indicates the direction of the attentional focus of 

the model as a consequence of the combination of the modal 

inputs. 

The vision layer (80 units) simulated the extraction of 

visual information from the surrounding environment, 

providing visual input to the system. It was divided into four 

slots, each defined by 20 processing units. Each slot 

corresponded to the visual information available at each of 

four possible locations within the visual field. The vision 



 

 

layer was fully connected in a forward direction to the 

integrative layer.  

Similarly the auditory layer provided input from the 

auditory modality, simulating the extraction of spoken 

information from the speech signal over time. The auditory 

layer was also fully connected to the central integrative 

layer in a forward direction. 

The semantic layer consisted of 160 units, allowing the 

network to represent semantic features associated with a 

given object or spoken word. The semantic layer was fully 

connected to the integrative layer with activation flowing 

both from integrative units to semantic units and also back 

from semantic to integrative units.  

The eye layer, to reflect the viewing behavior of the 

system, was also fully connected in both a forward and back 

direction to the central integrative layer. It consisted of four 

units, a unit for each location in the visual field represented 

in the vision layer. Activation of an eye unit was taken as 

representing the probability of fixating the location in the 

visual field associated with the given eye unit.   

 

Representations An artificial corpus consisting of visual, 

auditory, and semantic representations for 200 items was 

constructed to train and test the network on multiple cross-

modal tasks mapping between each of the modalities. A 

fundamentalist approach (Plaut, 2002) was taken in the 

construction of representations to ensure all aspects of the 

representations were controlled within the simulations.  

Visual representations of named objects were 

implemented as 20 unit binary vectors, with each unit 

representing the presence or absence of a given visual 

feature for the object. Each object had approximately 10 

units activated, which were selected at random, and 

balanced for their distribution across the set of all 200 items.  

For the semantic representations, each item was 

represented in terms of 8 units active from a set of 160 

semantic features, such that the overall set of semantic 

representations were fairly sparse, simulating semantically 

distinct words. Semantically similar pairs of words each 

shared 4 of the 8 active units representing each item. 

To simulate different grain-sizes of speech representation, 

three forms of auditory input were constructed, but with the 

overall similarity between representations controlled.  

For the fine grained auditory processing, representing 

phonological segmentation of the spoken word by the 

listener, words were encoded as six phonemes, with 

phonemes implemented as sets of 10 units, from which five 

units were active. All words within the corpus were 

composed of phonemes taken from an inventory of 20 

possible phonemes. To present the word an additional 

phoneme from the target word sequence was presented to 

the auditory layer at each time step. 

To simulate sublexical representations of a coarser grain 

size (moderate), two 30 unit binary feature vectors were 

created for each word from which 15 units were active. 

Coarse grained representations were formed by 60 unit 

binary feature vectors of which 30 units were active.  

 

Table 1: Mean cosine similarity of speech signal 

representations calculated between targets and distractors. 

 

Grain Size Distractor Signal Overlap ( ,σ) 

 Type Onset Rhyme Word 

Fine Competitor .18 (.07) .50 (.13) .34 (.07) 

 Unrelated .50 (.12) .50 (.12) .50 (.09) 

Moderate Competitor .17 (.08) .50 (.11) .34 (.07) 

 Unrelated .51 (.10) .51 (.10) .50 (.07) 

Coarse Competitor .34 (.10) .34 (.10) .34 (.07) 

 Unrelated .51 (.10) .51 (.10) .50 (.07) 

 

Visual, semantic and auditory competitors were also 

embedded within the corpora for 40 target items. For visual 

competitors 10 of 20 visual features were shared with target 

items with p = 1, with the remaining features shared with p 

= 0.5. Semantic competitors shared 4 of 8 semantic features 

with target representations, while unrelated items shared a 

maximum of 1 semantic property with any other item.

 

Table 2: Temporal organization of events in training. Describes input and target representations provided in training trials. 

 

Task

Activity ts Activity ts Activity ts Activity ts

Form to 

Semantics

4 items selected at 

random from corpus

0 - 14 Time invariant noise 

provided as input

0 - 14 Target: Target's Semantic 

representation

3 - 14 Input: Only location of 

target active

0 - 14

Speech to 

Semantics

Time invariant noise 

provided as input

0 - 14 Phonology of target as 

staggered input

0 - 14 Target: Target's Semantic 

representation

5 - 14 No constraints on 

activation

-

Speech to 

Location

4 items selected at 

random from corpus

0 - 14 Phonology of target as 

staggered input

0 - 14 No constraints on 

activation

- Target: Only location of 

target active

5 - 14

Semantics 

to Location

4 items selected at 

random from corpus

0 - 14 Time invariant noise 

provided as input

0 - 14 Input: Target's Semantic 

representation

0 - 14 Target: Only location of 

target active

2 - 14

Visual Input Auditory Input Semantic Layer Eye Layer

 



 

 

 

Fine grained spoken word competitors were defined by an 

overlap in the initial two components of their speech signal. 

For the unrelated items, we ensured that this set of words 

did not share more than the first component of the word and 

that no items shared their initial nor final three components. 

For moderate grain size representations 2/3 of the initial 30 

features of a competitor were shared with a target with p = 

1, with remaining features overlapping with p = 0.5. 

Controls ensured all initial and final moderate grain vectors 

were unique. For coarse grain competitors 1/3 of all features 

were shared with the corresponding target with p = 1, with 

remaining features overlapping with p = 0.5. Defining 

competitors in this way lead to the contrasts in levels of 

similarity between representations across corpora as 

described in Table 1. Although the level of similarity 

between competitor-target and unrelated distractor-target is 

consistent across corpora at the word level, the distribution 

of overlap varies between implementations as a function of 

grain size.  

 

Model Training The model was trained on four tasks (see 

table 2). Tasks were designed to simulate those performed 

by participants prior to testing through which associations 

between representations are acquired. The tasks were to map 

from visual representation to semantic representation, from 

auditory representation to the semantic representation, to 

activate the eye unit corresponding to the location of the 

item whose semantic representation is presented, and to 

activate the location of the item whose auditory 

representation is presented. Tasks were presented on a 

pseudo random basis with the task of mapping speech to 

location occurring four times less than other tasks. Items 

were selected from the corpus and assigned roles (target or 

distractor) and locations randomly. Initial connection 

weights were randomized and adjusted during training using 

recurrent back-propagation (learning rate = 0.05). Training 

was terminated after 850 000 trials. 

Results 

In the following sections we report the performance of three 

categories of model 1) Fine, models trained and tested on 

representations that simulate extraction of fine grained 

structure within the speech signal; 2) Moderate, models 

trained and tested on representations that simulate extraction 

of moderate structure within the speech signal; 3) Coarse, 

models trained and tested on representations that simulate 

coarse grained structure within the speech signal. The 

following results represent performance averaged across 

five instantiations of each model. For each instantiation a 

new corpus was constructed on which it was then trained 

and tested each initialized with a different random seed.  

Pre-Test 

Once trained all models were tested on their ability to 

complete each of the four training tasks for all items in the 

training corpus presented in all possible locations within the 

visual field. All three categories of model displayed similar 

levels of performance across all four tasks. In mapping from 

speech to semantics, activation of the semantic layer was 

most similar (cosine similarity) to the target item for 100% 

of items for all models. When mapping from visual to 

semantic representations, activation in the semantic layer 

was most similar (cosine similarity) to that of the target for 

98% of items in the case of coarse and fine grained models 

and 97% of items in the case of moderate models. When 

challenged to select the location of a target when presented 

with its corresponding auditory representation, the correct 

location was activated in both the coarse and fine models for 

96% of items and 98% of items for moderate models. All 

models displayed equal performance when locating a target 

indicated by the presence of its semantic representation, 

selecting the correct location for 99% of items.  

Simulating Huettig, Singh and Mishra (2011) 

The following conditions remained consistent across all 

simulations. Visual input was provided at time step (ts) 0 

and remained until the end of each test trial (ts 29). We 

report the activation of each unit within the eye layer as a 

proportion of the total activation of all units within this 

layer. This proportion is taken to represent the probability of 

fixating p(fix), the associated location within the visual 

field. Word onset occurred at ts 5, with an additional 

component of the speech signal presented at each time step 

until the entire speech signal had unfolded (ts 10). Auditory 

input then remains fixed until the end of the test trial.  

To simulate the conditions of Huettig, Singh and Mishra 

(2011) experiment 1, input to the models visual layer 

consisted of the visual representations of the target’s 

auditory competitor and semantic competitor along with two 

unrelated distractors. The target word’s auditory 

representation was presented as a staggered input to the 

auditory layer from ts 5. All models (fine, moderate and 

coarse) were tested on all 40 test sets embedded within the 

corpus (target, auditory competitor, semantic competitor and 

two unrelated distractors) in all 24 possible combinations of 

item and location.  Figure 2 displays the change in 

p(fixation) from ts 0 for each category of item (Aud = 

auditory competitor, Sem = semantic competitor, Control = 

unrelated distractor), averaged across all test trials. 

For analysis ratios were calculated between the proportion 

of fixations to a given competitor and the sum of the 

proportion of fixations to both the competitor and distractors 

(see Huettig & McQueen, 2007). A value of 0.5 would 

indicate both items were fixated equally, a value greater 

than 0.5 would indicate increased fixation of the competitor 

and lower than 0.5 increased fixation of the distractor. Mean 

ratios were calculated across items and instantiations.  

We conducted a 2-way ANOVA on the auditory 

competitor-distractor ratios with model as between-subject 

factor and time as within-subject factor for three 

theoretically-motivated time regions (preview, early and 

late). No significant differences were predicted during the 



 

 

preview period which refers to the time between display 

onset (ts 0) until the first time step in which auditory 

information relating to the target word is able to influence 

output layers (ts 7). The remainder of test trials was divided 

equally into two time bins, an early (ts 8 - 18) and a late (ts 

19 - 29) period as previous research had shown that auditory 

effects would occur (if at all) during the early but not the 

late period. 

 

 
Figure 2: Change in fixation proportions for simulations 

of Huettig, Singh and Mishra (2011) Experiment 1. 

 

There was a significant main effect of time, F(2, 234) = 

38.155, p < .001, eta-2 = .246, with auditory competitor-

distractor ratios differing between preview and early time 

windows, F(1,238) =  39.387, p < .001, and preview and late 

time windows, F(1,238) = 29.202, although there was no 

difference between early and late time windows. There was 

also a significant main effect of model, F(2, 117) = 4.467, p 

= .014, eta-2 = .071, with the fine and medium models 

resulting in significantly more fixations to the phonological 

distractor than the coarse model, means = .544, .544, and 

.508, respectively. Critically, there was a significant 

interaction between model and time, F(4, 234) = 3.582, p = 

.023, eta-2 = .058. The quadratic contrast effect for time was 

significant in the interaction, F(2, 117) = 5.074, p = .008, 

eta-2 = .080, indicating that the models were more 

differentiated at the early time steps than during the preview 

or later time steps. Models did not differ significantly within 

the preview period. There was however a significant 

difference between fine and coarse models, F(1, 78) = 

14.373, p < .001, and coarse and moderate models, F(1, 78) 

= 9.544, p = .003, in the early time window. The coarse 

model also differed from the fine F(1,78) = 4.286, p = .042, 

and moderate model F(1,78) = 7.153, p = 0.009, in the later 

time window. No difference was found between fine and 

moderate models in any time period. 

A 2-way ANOVA was also conducted on semantic 

competitor-distractor ratios with model as between subject 

factor and time as within-subject factor. Again we observed 

a main effect of time, F(2,234) = 230.642, p < .001, eta-2 = 

.663, semantic competitor distractor ratios differed 

significantly between preview and early, F(1,238) = 59.607, 

p < 0.001 preview and late, F(1,238) = 243.403, p < .001 

and early and late time windows, F(1,238) = 80.562, p < 

.001. There was no main effect of model nor was there a 

significant interaction between model and time. 

We then compared whether competitor-distractor ratios 

differed from chance (0.5) for each time step using one 

sample t-tests. The probability of fixating the auditory 

competitor first differed (p < 0.001) from that of the 

distractor from time step 11 in both fine and moderate 

models and continued to differ for all subsequent time 

points. In contrast fixation of the auditory competitor by the 

coarse model only differed marginally (p < 0.1) from the 

distractor item in time steps 13 – 17. Fixation of semantic 

competitors first differed significantly (p < 0.05) from 

distractor levels at ts 12 and continued to differ for all 

remaining ts, this was the case for all models. 

Discussion 

Our study aimed to examine the explanatory adequacy of 

the hypothesis that increased granularity of phonological 

processing, can account for the differences in fixation 

behavior between low and high literates observed in 

Huettig, Singh and Mishra (2011) Experiment 1. Our 

simulations demonstrate that increasing the grain size at 

which speech is processed can lead to a modulation of 

phonological effects. A model trained on representations of 

speech at the word level displayed only a marginal increase 

in fixation towards competitor items that overlapped in an 

auditory dimension, whereas models trained on 

componential, phoneme level representations or moderate 

grain size, sublexical components did display a significant 

increase in fixation of auditory competitors. Between model 

comparisons further demonstrated that the coarse grained 

implementation differed significantly from both fine and 

moderate grain models post word onset.  

Interestingly, such comparisons did not display a graded 

effect of grain size, with fine and moderate models not 

differing in fixation proportions towards auditory 

competitors at any stage within test trials. There are two 

possible reasons for our failure to observe a graded effect. 

On the one hand, qualitative features of the data hint that 

given a larger corpus and hence test set such effects may be 

observable. One sample, left tailed t-tests comparing the 

ratio between the proportion of fixations towards auditory 

competitors in the moderate model and the sum of the 

proportion of fixations to the auditory competitor in the 

moderate and fine model indicate a significant difference at 

ts 13 – 16, (p<0.05), this difference can be observed in 

Figure 2.  

On the other hand, it is conceivable that illiterates and low 

literates rely on very coarse grained structure within the 

speech signal. Although previous studies have shown that 

illiterates and low literates perform slightly better on 



 

 

syllable awareness than on phonemic awareness tasks, they 

still tend to perform far worse than proficient readers. This 

may suggest that achieving even moderate granularity of 

phonological processing may not be rapid. The results of 

our simulations could be interpreted as reflecting that when 

a moderate grain size of phonological processing is 

achieved performance improves rapidly and becomes 

similar to fine-grained models. 

Our results also demonstrate that increased granularity 

does not necessarily lead to a decrease in semantic effects as 

observed in Huettig, Singh and Mishra (2011). Although our 

simulations indicate phonological effects could be 

modulated by an increase in the grain size, an additional 

mechanism is needed to create the distinction between 

semantic effects observed across populations. A reduction in 

general processing speed in the illiterate population has 

been offered to account for differences in performance on a 

large variety of cognitive tasks (Salthouse, 1996). This 

potentially offers an explanation for a reduction in both 

auditory and semantic competitor effects. A general 

processing deficit for low literates, could be implemented by 

adding noise across sematic representations, representing a 

reduction in the fidelity of such representations. Adding 

noise in this manner would result in a general reduction of 

semantic competitor effects, however it is less clear whether 

the introduction of noise could also lead to the elimination 

rather than a general reduction of the phonological effect as 

observed in illiterate performance. As the authors 

acknowledge, behavior observed in Huettig et al (2011) 

suggests that the qualitative changes to the phonological 

competitor effects and the semantic competitor effects are 

distinct. Teasing apart the factors underlying observed 

differences in behaviour between populations is far from 

trivial, however explicit implementations such as the one 

described in this paper provide a means of testing the 

plausibility of proposed explanations. 
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