Real-Time Object Tracking and Novelty Detection
Implementing Background Modeling and Evolving Fuzzy Rule-Based Classifier

M.Sc Student: Ramin Ramezani
Supervisors: Dr. Plamen Angelov, Xiaowei Zhou
Year: 2006 – 2007
Course: DSP in Communication Systems

INTRODUCTION
Object tracking and novelty detection is performed in many automated and sophisticated visual surveillance and defense systems. This project is aimed to implement various object tracking algorithms like Non-Parametric Kernel Density Estimation for background-foreground modeling and Evolving Fuzzy Rule based Classifier for clustering the portions of observed scenes. These algorithms help the surveillance systems to work completely autonomously and unsupervised as well as performing in Real-Time. In order to track the moving object in a scene using these algorithms no operator is needed to initially specify the object for the systems to be tracked. These methods are to be implemented on the ActiveMedia Pioneer – 3DX Robots available at Communication Systems Department of Lancaster University. In the first method, a model of background is determined in the scene in order to detect whatever is not a background and is probably moving, using kernel density estimation by approximating the probability of each pixel in the frame as foreground or background. Probability estimation technique is also compared with different background subtraction methods in this project as like mean difference. The second method has been inspired from Image Segmentation using Evolving Clustering. In a constant picture, e-Clustering would segment the image into different portions specifying each allotment with a unique centre. Using the same methodology it is possible to compare each pixel of a frame with the same position pixels in the other frames and distinguishing that particular pixel as a foreground in case of being allocated to a different cluster. These methods on overall could be merged with prediction algorithms like Kalman Filtering or ex-TS in order to predict the next steps of the object and execute object tracking and/or novelty detection.

Evoking Fuzzy Rule-based Classifier
This method calculates the potential of each data in the data spatial density in Real-Time and unsupervised. Starts from one data considering it as a centre of an initial formed cluster. Having one fuzzy rule per class, extracts successive data and classify all in the same cluster or new formed clusters based on the potential of data. This method is used firstly in this project as Image Segmentation grabbing each frame and clustering the data into various segments. Using this methodology it is possible to pass the sequence of same position pixels in different frames to the system on-line in order to classify them. Therefore if a certain pixel does not get allocated in the identical class as the other same position pixels, it would be foreground. This approach (eClass) could be used in landmark recognition as well. Each frame grabbed by the system will be assigned with certain cluster centers, therefore any new frame entering the system with almost the same centers would be again identified as the same landmark and could be discarded from the memory and newly formed centers will be new landmarks. This method is fully unsupervised, and even cluster labeling is done autonomously.

Kernel Density Estimation for Background Modeling
Considering a sequence of background frames or pictures, each many contain events occurring in a frame and fade out after a while or even remain in the scene. The portions of a scene where remain constant with no or slight motions are considered as background and the rest are classified as a foreground. The aim of this method is to build a statistical representation of background which supports sensitive detection of moving objects in the scene as well as building a foreground representation in order to comply and support the tracking. This algorithm considers the density of each pixel which is the color presentation of the pixel comparing with the same position pixels but in consecutive frames. Forming the statistical color distribution function called Kernel Function (Gaussian in this project) in the feature space, enables the program to evaluate the probability of each newly pixel for being specified as a foreground or background making use of a threshold.

KDE Experimental Results
This method performs authentically even under bad climate conditions where the scenes contain rain or snow and background has slight motions as like tree branches displacements.

Acknowledgements
This is a chance to express my gratitude to my professor and supervisor Dr. Plamen Angelov for his successive support and guidance as well as my dear friend and supervisor Xiaowei Zhou for his efforts and kind during the implementation of this project. I would like to thank Communication Systems Department of Lancaster University for providing the required facilities and useful tracking platform for the academic year 2006-2007.

Major References

KDE Conclusion
This algorithm have been introduced basically for data clustering and in this project is used for image processing and background modeling in order to track the target. Comparing to KDE is rather faster and less memory consuming, due to discarding all the data apart from centroids.

eClass Experimental Results
These results show that the eClass method outperformed the Kalman filtering and ex-TS methods with an accuracy of 98.50% compared with 87.36% and 93.40% respectively. It is evident that the eClass method is more robust and accurate for real-time object tracking and novelty detection.

eClass Conclusion
This algorithm have been introduced basically for data clustering and in this project is used for image processing and background modeling in order to track the target. Comparing to KDE is rather faster and less memory consuming, due to discarding all the data apart from centroids.