Hands-on Interaction-oriented Programming

Amit K. Chopra! Matteo Baldoni? Samuel H. Christie V3
Munindar P. Singh3

1L ancaster University

2University of Torino 3North Carolina State University

AAMAS 2025, Detroit, Tutorial T8

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

https://www.lancaster.ac.uk/staff/chopraak/
https://www.di.unito.it/~baldoni/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://www.csc.ncsu.edu/faculty/mpsingh/

Motivation

The Idea of Protocols
Exercises: Specifying Protocols

Specifying and Verifying Protocols
Exercises: Specify BSPL protocols
Demo of Verification Tooling

Implementing MAS Based on Models of Interaction
Programming Exercises: Orpheus
Programming BDI Agents
Implementing Python Agents
Application-level Fault Tolerance

Conclusion

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Outline

Motivation

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Motivation

Sociotechnical Systems

Long-lived engagements between autonomous principals

Principal Principal

L <]

Principal Principal

» |n Ebusiness, health, finance,...

» Conceptually decentralized

Challenge

Realize an STS as a decentralized, loosely-coupled system that lets the
principals interact with maximal flexibility?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Multiagent Systems: Agents Help Principals Exercise
Autonomy

Principal Principal
e’ M oo a "
Principal g o Principal
a‘-p = &

Agents
P Are heterogeneous in construction
» Encode decision making of their respective principals

» Interact based on agreements and asynchronous protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Motivation

Agentic Al: Multiagent Paradigm

Flexible, Generative Al-powered agents that make real world decisions

Hotel agent Flight agent

& o
Bank agent Others

o T o

Inflexible coordination via workflows defeats flexibility

» We abandoned workflows in the 90s

> Started working on interaction meaning

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Interaction-Oriented Programming (IOP)

Empower stakeholders and programmers

Method
> Model a multiagent system in terms of interactions
» Compose and verify models

» Implement agents independently on the basis of models

High-level abstractions that

» Reflect stakeholder intuitions and

P> Let programmers focus on the business logic

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Outline

The Idea of Protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Idea of Protocols

Communication Protocols

A protocol defines how the agents ought to communicate with one another
A protocol is a model of a decentralized application!

» What are the main requirements for protocol specifications?

» How can we specify a communication protocol?

>
>
>

>
>

Roles (abstracting over agents)

Message schemas, i.e., allowed content

Message emission and reception, point-to-point or multicast, between
specified roles

Constraints on message occurrence

Constraints on message ordering

» Agents participate in a protocol by playing a role in it

» How can we develop agents suitable for a role?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Idea of Protocols

Protocol for a Healthcare Application

Patient sends a Complaint to Physician, who sends a Prescription to Pharmacy, who
sends Fulfill to Patient

Patient
~ ™
complaint fulfilled
e .
Physician ——— prescription ———— Pharmacy

> Autonomy means no one needs to send any message!
» Three parties, not client server

» Healthcare standards: Health Level 7 (HL7), Integrate the Healthcare
Enterprise (IHE)

> Informally described interactions: difficult to implement correctly

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 10

Protocol for Purchase Order (PO) Fulfillment Application

Several items in a PO that may be wrapped and packed independently to create a

shipment
Merchant
/ \ \
Address ltems
e ~
Labeler Items packed Wrapper

\ /
Shipping label ltems wrapped

\ /

Packer

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8

A Purchase Protocol (Just the Happy Path)

Specified as a UML interaction diagram
Unhappy path (featuring Reject) would be in another UML diagram

c:Customer m:Merchant s:Shipper
Request for Quotes
I [
Quote
[|
Accept
I [

Ship

I

Deliver

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Idea of Protocols

Protocols and Roles as State Machines

Protocol: shared view; roles: each local view
I'and ? mean send and receive, respectively

The Buyer Role Trade Protocol The Seller Role
! payment payment ? payment
? goods goods 1 goods
| | »
! payment payment ? payment
? goods

J (%) | xJ

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 13

The Idea of Protocols

Protocols Promote Interoperation, Autonomy,
Heterogeneity

» Autonomy by

» Minimally constraining agents’ decision making and interactions
> Interoperation by specifying

» Schemas of messages exchanged

» Meanings of messages, which determine the state of the interaction
» Correct behaviors

P> Heterogeneity by

» Providing the standard to which agents are implemented
» Defining the extent of heterogeneity: the agents can be heterogeneous
with regard to everything else

» All of the above contribute to loose coupling!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 14

The Idea of Protocols

Challenge: Information Integrity in Interactions

Interactions must compute consistent information objects

» An information object specification: [ID key, item, price]

B S

rfq(1D:5, item:jamN

ce:€10) !

commeor-

quote(\D:l, item:fig, pri

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 15

The Idea of Protocols

Integrity Violations
Can Be Avoided By Local Checks

» Object: [ID key, item, price]

B

rfq(ID:1, item:fig)
: rfq(ID:1, item:jam)

rfq(ID:1, item:ﬁg)

price:€10)

| quote(lD:l, item:jam,

S B S

(a) B messes up. (b) S messes up.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 16

The Idea of Protocols

Integrity Violation: Race Condition

Cannot be Avoided By Local Checks; Requires Verification

» Object: [ID key, item, price]

| rfq(ID:1, item:fig)
21 .

AAMAS 2025, Detroit, Tutorial T8 17

Hands-on IOP

chopra@lancaster.ac.uk (Lancaster, UniTO, N

The Idea of Protocols

Challenge: Interactions Must Not Deadlock

There must always be a path that agents can take that leads to a final state

The Buyer Role Trade Protocol The Seller Role
! payment payment \ ? payment \
? goods goods ! goods
!) » |
! payment payment ? payment

o) el e/

» Deadlock: if B chooses ? goods and S chooses ? payment

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 18

The Idea of Protocols

Challenge: Asynchronous Communication
Practical; Offered by the Internet

Principal Principal

Agent ————Protocol ——— — Agent

Asynchronous communication infrastructure

> Senders and receivers do not have to rendezvous (synchronize) to
perform a communication

» Sender puts a message into the communication infrastructure
regardless of the state of the receiver
P> Receiver receives the message whenever the infrastructure delivers it

» Decouples senders and receivers

» Conducive to autonomy

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Idea of Protocols

Properties of the Communication Infrastructure

How can we achieve each property?

Noncreative: Must only sent messages be received?
» Will an infrastructure create messages?
Reliable: Must a message that is sent be received?
> Will an infrastructure drop messages?
Ordered: Must the messages from a sender to a receiver be delivered
in the order in which they were sent?
» Will the infrastructure deliver messages in any order?
Global: Must the messages from different senders to the same
receiver be received in the order in which they were sent?

» Called “causal” ordering in the literature but that term
refers to potential causality

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 20

The Idea of Protocols

Challenge: Unordered, Asynchronous Communication
The Gold Standard!

» Today: Commonplace to rely on communication infrastructures that
provide first-in first-out (FIFO) delivery

» E.g., as provided by TCP and message queues
» But ordered delivery has drawbacks

» Hidden synchronization
» An additional assumption for the multiagent system to work correctly
» Couples the agents through the infrastructure

» Challenge: Coordinate decentralized computation without assuming
ordered delivery infrastructure

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 21

The Idea of Protocols

Challenge: Engineering with Agent Communication

» Begin from a protocol

> Generate role skeletons (or endpoints) from the protocol
» For each role skeleton, implement one or more agents who realize
(“flesh out”) it
» Map each skeleton to a set of incoming and outgoing messages and the
changes each message induces in the local state
» Implement methods to process each incoming message
» Send messages allowed by the protocol
» Challenge: Generating role skeletons that ensure interoperation

» Not trivial when a protocol involves more than two roles
» The protocol must be such that such skeletons are derivable from it

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Challenge: Modeling Application Meaning

Meaning lies in the application domain

» Offers, Shipments, Payments are domain objects that have meaning
to users and on the basis of which they perform their decision making
> Offer is a domain object with a unique identifier and an associated item
and price
» Each Offer sets up a commitment from Seller to Buyer that if Payment
is made within 3 days, then Shipment will be made within 5 days.

» Challenge: Protocols must enable capturing application meaning

» Communications compute (create and change state of) domain
objects, which capture the state of the application!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 23

The Idea of Protocols

Inadequate: Control Flow-Based Approaches For Modeling
Protocols

UML interaction diagrams, state machines, ...

» Cannot model application meaning, which is necessarily grounded in
information!

» Cannot meet the foregoing challenges

» Need an information-based approach for modeling protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 24

The Idea of Protocols Exercises: Specifying Protocols

Exercises: Specifying Protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Outline

Specifying and Verifying Protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 26

Specifying and Verifying Protocols

Traditional Specifications: Procedural

Low-level, over-specified protocols, easily wrong

A B C A B
—m o
3 3 Em
1 < My — -~ My —

» Traditional approaches
» Emphasize arbitrary ordering and occurrence constraints
» Then work hard to deal with those constraints

» Our philosophy: The Zen of Distributed Computing

> Necessary ordering constraints fall out from causality
» Necessary occurrence constraints fall out from integrity
» Unnecessary constraints: simply ignore such

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 27

Specifying and Verifying Protocols

Properties of Participants

» Autonomy
> Myopia
> All choices must be local
» Correctness must not rely on future interactions
» Heterogeneity: local # internal
> Local state (projection of global state, which is stored nowhere)

» Public or observable
> Typically, must be revealed for correctness

> Internal state
> Private
» Must never be revealed: to avoid false coupling
» Shared nothing representation of local state
» Enact via messaging

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

BSPL, the Blindingly Simple Protocol Language

Main ideas

» Only two syntactic notions

» Declare a message schema: as an atomic protocol
» Declare a composite protocol: as a bag of references to protocols
» Parameters are central

» Provide a basis for expressing meaning in terms of bindings in protocol
instances

» Yield unambiguous specification of compositions through public
parameters

» Capture progression of a role's knowledge

» Capture the completeness of a protocol enactment

» Capture uniqueness of enactments through keys

> Separate structure (parameters) from meaning (bindings)
» Capture many important constraints purely structurally

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Key Parameters in BSPL

Marked as "key!

» All the key parameters together form the key

v

Each protocol must define at least one key parameter

» Each message or protocol reference must have at least one key
parameter in common with the protocol in whose declaration it occurs

> The key of a protocol provides a basis for the uniqueness of its
enactments

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 30

Parameter Adornments in BSPL

Capture the essential causal structure of a protocol (for simplicity, assume all parameters
are strings)

> Tin: Information that must be provided to instantiate a protocol

> Bindings must exist locally in order to proceed
» Bindings must be produced through some other protocol

» Tout™ Information that is generated by the protocol instances
» Bindings can be fed into other protocols through their "in" parameters,
thereby accomplishing composition
» A standalone protocol must adorn all its public parameters "out™
» nil™: Information that is absent from the protocol instance
» Bindings must not exist

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 31

Protocol in BSPL: Main Ideas

» Declarative
» No control flow, no control state
» Information-based
» Specifies the computation of distributed information object
> Message specification is atomic protocol
» Specified via parameters
» Explicit causality

» The messages an agent can send depends upon what it knows
» Via parameter adornments "out™, Tin™", Tnil™

> Integrity

» Agent only sends messages that preserve consistency of objects
> Via key constraints

» Asynchronous messaging
» Requires no ordering from infrastructure

» Composition and verification

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols

The Initiate protocol

Initiate {
role B, S
parameter out ID key, out item

B — S: rfq[out ID key, out item]

}

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 Initiate {
2 role B, S
3 parameter out ID key, out item
4
5 B+— S: rfq[out ID key, out item]
6 }
Initiate (virtual)
1D item
B:rfq S:rfq

ID item ID item

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 lInitiate {
2 role B, S
3 parameter out ID key, out item
4
5 B~ S: rfq[out ID key, out item]
6}
Initiate (virtual)
D item
1 fig
B:rfq S:rfq

ID item ID item

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 lInitiate {
2 role B, S
3 parameter out ID key, out item
4
5 B~ S: rfq[out ID key, out item]
6}
Initiate (virtual)
1D item
1 fig
5 jam
B:rfq S:rfq
1D item 1D item
1 fig
5 jam

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 lInitiate {
2 role B, S
3 parameter out ID key, out item
4
5 B~ S: rfq[out ID key, out item]
6}
Initiate (virtual)
1D item
1 fig
5 jam
B:rfq S:rfq
1D item 1D item
1 fig 5 jam

5 jam

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 lInitiate {
2 role B, S
3 parameter out ID key, out item
4
5 B~ S: rfq[out ID key, out item]
6}
Initiate (virtual)
1D item
1 fig
5 jam
B:rfq S:rfq
ID item ID item
1 fig 5 jam
5 jam
x1 apple

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 33

Specifying and Verifying Protocols

The Initiate protocol

1 lInitiate {

2 role B, S
3 parameter out ID key, out item
4
5 B+— S: rfqfout ID key, out item]
6}
Initiate (virtual)
ID item
1 fig
5 jam
8 fig
B:rfq S:rfq
1D item 1D item
1 fig 5 jam
5 jam
8 fig

Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

chopra®@lancaster.ac.uk (Lancaster, UniT

33

The Offer Protocol

1 Offer {

2 role B, S

3 parameter out ID key, out item, out price
4

5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7}

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8 34

The Offer Protocol

1 Offer {

2 role B, S

3 parameter out ID key, out item, out price
4

5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7}

Offer (virtual)

1D item price
1 fig
B:rfq B:quote S:rfq S:quote
1D item ID item price ID item ID item price
1 fig 1 fig

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Offer Protocol

1 Offer {

2 role B, S

3 parameter out ID key, out item, out price
4

5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7}

Offer (virtual)

1D item price
1 fig 10
B:rfq B:quote S:rfq S:quote
1D item ID item price ID item ID item price
1 fig 1 fig 1 fig 10

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Offer Protocol

1 Offer {

2 role B, S

3 parameter out ID key, out item, out price
4

5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7}

Offer (virtual)

1D item price
1 fig 10
B:rfq B:quote S:rfq S:quote
1D item ID item price ID item ID item price
1 fig 1 fig 10 1 fig 1 fig 10

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Offer Protocol

Offer {
role B, S
parameter out ID key, out item, out price

B — S: rfq[out ID, out item]
S — B: quote[in ID, in item, out price]

}

NO O~ WN -

Offer (virtual)

1D item price
1 fig 10
B:rfq B:quote S:rfq S:quote
1D item ID item price ID item ID item price
1 fig 1 fig 10 1 fig 1 fig 10

x4 fig 10

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Decide Offer Protocol

Choice: accept and a reject with the same ID cannot both occur

Decide Offer {
role B, S
parameter out ID key, out item, out price, out decision

1
2
3
4
5 B+— S: rfq[out ID, out item]

6 S — B: quote[in ID, in item, out price]
7

8

9

0

B +— S: accept[in ID, in item, in price, out decision]
B — S: reject[in ID, in item, in price, out decision]

10 }

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

The Decide Offer Protocol

Choice: accept and a reject with the same ID cannot both occur

1 Decide Offer {
2 role B, S
3 parameter out ID key, out item, out price, out decision

4
5 B~ S: rfqfout ID, out item]
6 S — B: quote[in ID, in item, out price]
7
8 B~ S: accept[in ID, in item, in price, out decision]
9 B+— S: reject[in ID, in item, in price, out decision]
10 }
Decide Offer (virtual)
ID item price decision
1 fig 10
B:rfq B:quote B:accept B:reject
ID item 1D item price ID item price decision 1D item price decision

1 fig 1 fig 10

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 35

The Decide Offer Protocol

Choice: accept and a reject with the same ID cannot both occur

Decide Offer {
role B, S
parameter out ID key, out item, out price, out decision

1
2
3
4
5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7

8

9

0

B — S: accept[in ID, in item, in price, out decision]
'_)

B S: reject[in ID, in item, in price, out decision]
10 }
Decide Offer (virtual)
ID item price decision
1 fig 10 nice
B:rfq B:quote B:accept B:reject
ID item ID item price ID item price decision ID item price decision
1 fig 1 fig 10 1 fig 10 nice

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 35

The Decide Offer Protocol

Choice: accept and a reject with the same ID cannot both occur

Decide Offer {
role B, S
parameter out ID key, out item, out price, out decision

1
2
3
4
5 B~ S: rfqfout ID, out item]

6 S — B: quote[in ID, in item, out price]
7

8

9

0

B — S: accept[in ID, in item, in price, out decision]
'_)

B S: reject[in ID, in item, in price, out decision]
10 }
Decide Offer (virtual)
ID item price decision
1 fig 10 nice
B:rfq B:quote B:accept B:reject
ID item ID item price ID item price decision ID item price decision
1 fig 1 fig 10 1 fig 10 nice x1 fig 10 nice

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 35

Specifying and Verifying Protocols

The Purchase Protocol

1 Purchase {

2 role B, S, Shipper

3 parameter out ID key, out item, out price, out outcome

4 private address, resp

5

6 B~ S: rfqfout ID, out item]

7 S — B: quote[in ID, in item, out price]

8 B +— S: accept[in ID, in item, in price, out address, out resp]
9 B~ S: reject[in ID, in item, in price, out outcome, out resp]
10

11 S — Shipper: ship[in ID, in item, in address]
12 Shipper — B: deliver[in ID, in item, in address, out outcome]

> reject conflicts with accept on resp (a private parameter)

> reject or deliver must occur for completion (to bind outcome)

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols

Knowledge and Viability

When is a message viable? What effect does it have on a role’s local knowledge?

Sender’s View

Knows Does not know

e
L7

Knows Does not know

Receiver's View

Knows Does not know
in . H"-HJF §
in .
out nil
. out
nil é
Knows Does not know

> Knowledge increases monotonically at each role

> An "out' parameter creates and transmits knowledge

> An "in parameter transmits knowledge

P> Repetitions through multiple paths are harmless and superfluous

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols

Possible Enactments as Sets of Local Histories

Each participant's local history: set of messages sent and received

Buyer Seller Shipper Buyer Seller Shipper
| | | | | |
— rfa—, | — rfa—, |
< quote —, 1 < quote —, 1
\— accept > 1 \— reject - 1

\— ship — 1
‘ 1 1
| |
| |

I
I I I
.	
<— deliver	

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 38

Specifying and Verifying Protocols Exercises: Specify BSPL protocols
Standing Order

Composite keys and Composition

1 Insurance—Claims {

2 role Vendor (V), Subscriber (S)

3 parameter in plD key, out cID key, out claim, out response
4 S — V: claimRequest[in plD, out cID, out claim]

5 V — S: claimResponse[in pID, in clID, out response]
6
7
8

}

Create—Policy {
9 role V, S,
10 parameter out plD, out details
11 ...
12 Insurance—Claims(V, S, in pID key, out cID key, out claim, out
response)
13 }

» A policy (identified by pID) may be associated with multiple claims
(identified by cID)

» Create-Policy composes Insurance-Claims, supplying it with pID

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 39

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

in-out Polymorphism

price could be Tin™ or Tout™

Flexible —Offer {
role B, S
parameter in ID key, out item, price, out qlD

1

2

3

4

5 B+~ S: rfq[in ID, out item, nil price]
6 B+— S: rfq[in ID, out item, in price]
7
8
9
0

S — B: quote[in ID, in item, out price, out qlD]
S — B: quote[in ID, in item, in price, out qlD]
1

}

» The price can be adorned "in™ or Tout™ in a reference to this protocol

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 40

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Flexible Sourcing of out Parameters
Buyer or Seller Offer

Buyer—or—Seller —Offer {
role Buyer, Seller
parameter in ID key, out item, out price, out confirmed

1

2

3

4

5 Buyer — Seller: rfq[in ID, out item, nil price]
6 Buyer — Seller: rfq[in ID, out item, out price]
7
8
9
0

Seller +— Buyer: quote[in ID, in item, out price, out confirmed]
Seller — Buyer: quote[in ID, in item, in price, out confirmed]

10 }

» The BUYER or the SELLER may determine the binding
» The BUYER has first dibs in this example

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Remark on Control versus Information Flow

» Control flow
» Natural within a single computational thread
> Exemplified by conditional branching
» Presumes master-slave relationship across threads
» Impossible between mutually autonomous parties because neither
controls the other
» May sound appropriate, but only because of long habit

» Information flow

» Natural across computational threads
» Explicitly tied to causality

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Summary: Main ldeas

Taking a declarative, information-centric view of interaction to the limit

» Specification
P> A message is an atomic protocol
> A composite protocol is a set of references to protocols
> Each protocol is given by a name and a set of parameters (including
keys)
» Each protocol has inputs and outputs
P> Representation

> A protocol corresponds to a relation (table)

» Integrity constraints apply on the relations
» Enactment via LoST: Local State Transfer

» Information represented: local # internal

» Purely decentralized at each role

» Materialize the relations only for messages

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Realizing BSPL via LoST

Think of the message logs you want

» For each role
» For each message that it sends or receives
» Maintain a local relation of the same schema as the message
> Receive and store any message provided

» |t is not a duplicate
> Its integrity checks with respect to parameter bindings
» Garbage collect expired sessions: requires additional annotations

» Send any unique message provided

> Parameter bindings agree with previous bindings for the same keys for
Tin7 parameters
» No bindings for "out™ and "nil™ parameters exist

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 44

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Information Centrism

Characterize each interaction purely in terms of information

» Explicit causality
» Flow of information coincides with flow of causality
» No hidden control flows
» No backchannel for coordination
> Keys
» Uniqueness
> Basis for completion
> Integrity
> Parameter has only one value (relative to its value of its key)
P> Immutability
» Durability
» Robustness: insensitivity to

» Reordering by infrastructure
» Retransmission: one delivery is all it needs

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Safety: Purchase Unsafe

Remove conflict between accept and reject

1 Purchase Unsafe {

2 role B, S, Shipper

3 parameter out ID key, out item, out price, out outcome
4 private address, resp

5

6 B~ S: rfqout ID, out item]

7 S — B: quote[in ID, in item, out price]

8 B — S: accept[in ID, in item, in price, out address]
9 B+~ S: reject[in ID, in item, in price, out outcome]
10

11 S — Shipper: ship[in ID, in item, in address]
12 Shipper — B: deliver[in ID, in item, in address, out outcome]
13 }

P> B can send both accept and reject

» Thus outcome can be bound twice in the same enactment

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Liveness: Purchase No Ship

Omit ship

1 Purchase No Ship {

2 role B, S, Shipper

3 parameter out ID key, out item, out price, out outcome

4 private address, resp

5

6 B+— S: rfq[out ID, out item]

7 S — B: quote[in ID, in item, out price]

8 B +— S: accept[in ID, in item, in price, out address, out resp]
9 B+~ S: reject[in ID, in item, in price, out outcome, out resp]
10

11 Shipper — B: deliver[in ID, in item, in address, out outcome]

> If B sends reject, the enactment completes

> If B sends accept, the enactment deadlocks

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Exercises: Specify BSPL protocols

Safety and Liveness Violations

Encode a protocol's causal structure in temporal logic and evaluate propertes

|

|

|

|

!

I teee. yeesaest
| |
| |
|

|

|

|

Cannot occur

— reject —»,
| 1
<— deliver
| |

Purchase Unsafe Purchase No Ship
B S Shipper B S Shipper
—da— —de—
< quote —, | \< quote —, |
\— accept > | — accept >, 1
| — ship —| <~— deliver |

Safety Violation Liveness Violation

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 48

Specifying and Verifying Protocols Demo of Verification Tooling

Encode Causal Structure as Temporal Constraints

» Reception. If a message is received, it was previously sent.
» Information transmission (sender's view)

» Any "in' parameter occurs prior to the message
» Any Tout parameter occurs simultaneously with the message

» Information reception (receiver's view)
» Any "out” or "in parameter occurs before or simultaneously with the
message
» Information minimality. If a role observes a parameter, it must be
simultaneously with some message sent or received
» Ordering. If a role sends any two messages, it observes them in some
order

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 49

Verifying Safety

» Competing messages: those that have the same parameter as out
> Conflict. At least two competing messages occur

> Safety iff the causal structure A conflict is unsatisfiable

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 50

Specifying and Verifying Protocols Demo of Verification Tooling

Verifying Liveness

> Maximality. If a role is enabled to send a message, it sends at least
one such message

» Reliability. Any message that is sent is received
» Incompleteness. Some public parameter fails to be bound

» [ive iff the causal structure A the above three is unsatisfiable

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 51

Exercises 1: Abruptly Cancel

1 Abruptly Cancel {

2 role B, S

3 parameter out ID key, out item, out outcome

4

5 B~ S: order [out ID, out item]

6 B +— S: cancel [in ID, in item, out outcome]
7 S — B: goods [in ID, in item, out outcome]
8}

» Is this protocol safe?

» Is this protocol live?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Exercise 2: Abruptly Cancel Modified (with "nil™)

1 Abruptly Cancel {

2 role B, S

3 parameter out ID key, out item, out outcome

4

5 B~ S: order [out ID, out item]

6 B +— S: cancel [in ID, in item, nil outcome]
7 S — B: goods [in ID, in item, out outcome]
8}

» Is this protocol safe?

» Is this protocol live?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Demo of Verification Tooling

Exercise 3: Goods Priority

» Modify Abruptly Cancel so that goods takes priority over cancel
» |If S sends Goods, that is the outcome of the interaction
P> S cannot send Goods after receiving Cancel
» If S receives Cancel before Goods, cancellation is the outcome
» B cannot send Cancel after receiving Goods

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Specifying and Verifying Protocols Demo of Verification Tooling

Solution

1 Abruptly Cancel {

2 role B, S

3 parameter out ID key, out item, out outcome

4

5 B~ S: order [out ID, out item]

6 B +— S: cancel [in ID, in item, nil outcome, out rescind]

7 S — B: cancelAck [in ID, in item, out outcome, in rescind]
8 S — B: goods [in ID, in item, nil rescind, out outcome]

9

}

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 55

Implementing MAS Based on Models of Interaction
Outline

Implementing MAS Based on Models of Interaction

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 56

Implementing MAS Based on Models of Interaction Programming BDI Agents

Multiagent system = agents + interaction protocol
Power of Al agents: their flexibility

An interaction protocol models the communication constraints
between agents in a multiagent system

Engineering multiagent system based on protocols offers key benefits

» Decentralized MAS; without relying on a distinguished locus of state
or control

» Clear implementation, separation between the coordination aspects
and business logic of an agent

» [oose coupling, changes in one agent's implementation do not affect
the implementation of others

» Reducing agent complexity, avoiding programming errors

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 57

Traditional Approach: Informal and Ad Hoc

Prevalent approaches curtail agent flexibility

Unfortunately, leading (cognitive) programming models for MAS

» Jason [Vieira et al., 2007], JADEL [Bergenti et al., 2017], JaCaMo
[Boissier et al., 2013], JADE [Bellifemine et al., 2007], SARL
[Rodriguez et al., 2014]

Programming Al agents to enjoy flexibility is difficult
» Methods for interactions and agent programming bypass each other
> Message handlers ignore the protocol

> Agent code is unwieldy and difficult to maintain

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 58

Traditional Approach: Informal and Ad Hoc

Informal protocols; no support for meaning; programmer tracks state
The NetBill protocol as a UML Sequence Diagram

Listing: Jason snippet of a MERCHANT agent.
‘ . | 1+request(ld, Item)[source(Customer)]
.&)‘ 2 : price(ltem, Price)
| aquote 3 <— +nbp_state(ld, quoting);

- | 4 .send (Customer, tell , quote(ld,

3 Item, Price)).
5 +accept(ld,ltem, Price)[source(Customer
accept !)]

nbp_state(ld, quoting) &
goods(Iltem, Goods)
<— —nbp_state(ld, quoting);
+nbp_state(ld, shipping);
.send (Customer, tell , goods(Id,
Item, Price, Goods)).

ep!

|
0 |

|

| receipt

|

T T

| |

O Vo~

=

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 59

Implementing MAS Based on Models of Interaction Programming BDI Agents

Shortcomings about AOPLs

In 2012, Michael Winikoff [Winikoff, 2012] highlighted two shortcomings about AOPLs

AOPLs supported little more than primitives for sending and receiving
messages
» GOTOs and labels: Winikoff saw the use of such primitives as

transferring control between agents and drew an unflattering analogy
with the use of gotos in programming

Interaction protocols (typically in AUML) were message-centric and
over-constrained the interaction between agents

> Less flexibility and robustness Interaction protocols (AUML) do not

leave the agents room to be autonomous or to exploit their flexibility
and robustness when interacting with other agents

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8 60

Implementing MAS Based on Models of Interaction Programming BDI Agents

Shortcomings about AOPLs

In 2012, Michael Winikoff [Winikoff, 2012] highlighted two shortcomings about AOPLs

AOPLs still suffer from the shortcomings Winikoff highlighted!

As a result:
» Asynchronous message exchanges and multi-party solutions are more
difficult to design and to program and they are more prone to errors

P Incompatibilities between agents due to the message schemas being
blended into business logic

» Semantic errors due to a lack of a formal model

> Inflexibility due to the programmer having to maintain the protocol
state via a state machine

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8 61

Implementing MAS Based on Models of Intera ng BDI Agents

Orpheus

In Greek mythology, a poet and a companion of Jason on his adventures

Di Giovani Dall’Orto - Opera propria, Pubblico dominio,

https://commons.wikimedia.org/w/index.php?curid=1303452

chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP , Detroit, Tutorial T8

https://commons.wikimedia.org/w/index.php?curid=1303452

Implementing MAS Based on Models of Interaction Programming BDI Agents
Orpheus

Orpheus unites two aspects of autonomy

» Cognitive autonomy, via Jason [Vieira et al., 2007]

» Social autonomy, via information protocols, in particular, Blindingly
Simple Protocol Language (BSPL) [Singh, 2011]

Orpheus overcomes shortcomings of message-centric interaction
protocols

» Offering to programmers/developers AOPLs that include higher level
abstractions that hide low-level messaging concerns (as
recommended in [Winikoff, 2012])

> its centrepiece is the generation of Jason adapter that supports an
agent programming (API) that enables engineering loosely coupled,
flexible, and decentralised MAS

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 63

Implementing MAS Based on Models of Interaction Programming BDI Agents
Orpheus

Engineering multiagent systems: Engineering protocols + engineering agents

Cognitive Information
programming © ’%+) protocols
& o EA
\ ,§o O (54 /
kY L o

S L e. % :

% S, < .

N Iy

A . '

! % OrpheusA. % !

' programming .

! 1

specify general plans S for declaratively compute
' protocols .

| |

i ! |

' maintain state .

1‘ apply protocol semantics .

' facilitate programming /
. | ,

----- Interaction state <---

chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP Detroit, Tutorial T8 64

Implementing MAS Based on Models of Interaction Programming BDI Agents

Orpheus Programming Model

Designing Agents with Orpheus

» Orpheus focuses not on
reactions to incoming
messages

» Orpheus focuses on
computing messages
enabled to be sent given
the protocol semantics
and the information
available to the agent

» Orpheus abstracts out
reasoning about the
protocol into automatic
generated code (through
the Orpheus Tool)

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Agent Implemented via Orpheus
MAS Specification
Protocol in BSPL

Queries and Plans
Internal Logic

Compute Enabled Messages

v
Orpheus Compiler
into Adapter

Update Local State: Emission

|
|
‘ Update Local State: Reception
|

Attempt Emission

no central store

Internal Agent State ‘ Decentralized

}_‘ Social State
projected to each agent

Asynchronous Communication Service

‘ Local (Protocol) State

Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol:

Seller can make an offer; Buyer can instruct Bank to pay; Bank can transfer funds to

Seller; Seller can send shipment or refund

1 EBusiness {

2 role Buyer, Seller , Bank

3 parameter out ID key, out item, out price, out status

4 Seller —> Buyer offer [out ID key, out item, out price]

5 Buyer —> Seller accept [in ID key, in item, in price, out
decision |

6 Buyer —> Bank instruct [in ID key, in price, out details]

7 Bank —> Seller transfer [in ID key, in price, in details,
out payment|

8 Seller —> Buyer shipment [in ID key, in item, in price,
status |

9 Seller —> Bank refund [in ID key, in item, in payment,
amount, out status]

10 }

out

out

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item

Buyer — Seller : rfq [out ID key, out item]

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item

item

Buyer — Seller : rfq [out ID key, out item | SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8 67

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item quote

price

Seller — Buyer : quote [in ID key, in item, out price]

chopra®@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item quote
quote pr ice

price

Seller — Buyer : quote [in ID key, in item, out price | SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item quote
quote pr ice

price

Seller — Buyer : quote [in ID key, out price] SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item

price

chopra®@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item offer
offer price

price

Seller — Buyer : offer [out ID key, out item, out price | SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item offer
offer® ——_ decision price

agcept / reject

price

Buyer — Seller : accept [in ID key, in item, in price, out decision |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item

item offer _decision
agcept/ reject

offer® —— decision price
arcept/ reject

price —
~ e

Buyer — Seller : accept [in ID key, in item, in price, out decision | SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8 67

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item offer decision
agcept/ reject
offer® ——— decision price
ccept / reject

price —
instructl \\ /
details

Buyer — Bank : instruct [in ID key, in price, out details |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item offer¢ ——— decision
arcept/reject
offer® ———, decision price
ccept / reject

price
instructl \ /
details

price

instruct

details

Buyer — Bank : instruct [in ID key, in price, out details | SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item status —offere —— decision
shipmentafcept / reject
offer® ———, decision price
ccept / reject

price
instructl \ /
details

price

instruct

details

Seller — Buyer : shipment [in ID key, in item, in price, out status |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item status <—offer¢ —— decision
shipmentafcept / reject
status S — decision rice
shipméritdccept / reject P

price —
instructl \ /
details

price

instruct

details

Seller — Buyer : shipment [in ID key, in item, in price, out status |
SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item status 4-—offer decision
shipmentagcept / reject
status <—ome® — decision rice
shipi&iitdccept / reject P

price —
instructl \ /
details

price
transfe,
instruct® "% payment

details

Bank — Seller : transfer [in ID key, in price, in details, out status |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item status <—offer¢ ——— decision
shipment Jccept/reject
status foofe® — decision rice
shiprRLISt ccept / reject P

. transfer
price Buyer | ¢———— instruct$ ——————————— payment
instructl \ /

details details
price
instruct m payment
details

Bank — Seller : transfer [in ID key, in price, in details, out status |
SENT!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

item
item status <—offereé ———— decision
shipment | accept/reject
status oot decision rice
shiprft&ftdccept / réject p

. transfer
price Buyer instruct . payment
instructl ‘\\ / refundl

details m details amount /status

price
tra nsfe;
instruct payment

details

Seller — Bank : refund [in ID key, in item, in payment, out amount, out
status |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8 67

Implementing MAS Based on Models of Interaction Programming BDI Agents

An example

The EBusiness Protocol

chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP Detroit, Tutorial T8 68

Implementing MAS Based on Models of Interaction Programming BDI Agents

Orpheus Programming Model

Designing Agents with Orpheus

An incoming message is added to the local state if it is consistent
with the local state

» |.e., if no other binding is already known for any its parameters
(relative to the key)

Outgoing messages

» An enabled instance is a partial instance in that:
» its IN parameters are bound because their bindings are known, and
» its OUT parameters are not bounded because they are not known
> An attempt is successful if the completed messages are mutually

consistent in their bindings; the sent messages are added to the local
state

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8 69

Implementing MAS Based on Models of Interaction Programming BDI Agents

Orpheus Programming Model

Enabled-Based Programming Model

Orpheus supports a novel programming model based on message

enablement, in which the developer specifies plans for emitting
enabled messages

To achieve some goal, the agent

> queries if there are enabled instances corresponding to the message it

wants to send,

» completes them by producing bindings for their OUT parameters,

and

> attempts to send them in one shot

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

70

Implementing MAS Based on Models of Interaction Programming BDI Agents

Plan Pattern and Orpheus Primitives

Listing: Identify a goal and which messages to send for it

1+!lg

2 : enabled(m) & ..& enabled(mg)

3 < lcomplete(my,...,mq);

4 lattempt(my,...,mgq)

5

6 +!lattempt(my,...,mq)

7 : consistent(my,...,mq)

8 <— for (.member(m[receiver(R)], [m,...,mq])) {
9 .send (R, tell, m);

10 +sent(m)

11 1.

12

13 enabled (m(...)) :— ... //BSPL semantics

14

15 consistent (my...mg) :—...//BSPL semantics
16

17 +sent(m) <— ... // BSPL semantics

18

19 +m : consistent(m, local) <— ... // BSPL semantics

The Orpheus Compiler

https://www.di.unito.it/~baldoni/argonauts/

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 72

https://www.di.unito.it/~baldoni/argonauts/
https://www.di.unito.it/~baldoni/argonauts/

The Orpheus Compiler

https://www.di.unito.it/~baldoni/argonauts/

A zip file with Orpheus and some examples
https://www.di.unito.it/~baldoni/argonauts/AAMAS2025.zip

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 73

https://www.di.unito.it/~baldoni/argonauts/
https://www.di.unito.it/~baldoni/argonauts/AAMAS2025.zip
https://www.di.unito.it/~baldoni/argonauts/AAMAS2025.zip
https://www.di.unito.it/~baldoni/argonauts/SlidesJason.pdf
https://www.di.unito.it/~baldoni/argonauts/SlidesJason.pdf

The Orpheus Compiler

https://www.di.unito.it/~baldoni/argonauts/

The Orpheus compiler automatically generates agent adapters to
manage the local state and query it.

java -jar argonauts.jar —--orpheus <file.xml>

Listing: Generated Jason code for computing enabled accepts
1 enabled(accept(ld, Item, Price, out)[receiver(Seller)]) :—
2 table_ID(1d) &
3 table_item(Id, Item) &
4 table_price(ld, Price) &
5 not (table_decision(ld, Decision)) &
6 table_Seller(ld, Seller).

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

https://www.di.unito.it/~baldoni/argonauts/

The Orpheus Compiler

https://www.di.unito.it/~baldoni/argonauts/

Listing: Generated Jason code for computing updating local state
1+4sent(accept(ld, Item, Price, Decision)[receiver(Seller)])
2 < +table_decision(ld, Decision).

3

4 +offer(ld, ltem, Price)[source(Seller)]

5 not (table.ID(Id) &

6 table_item(Ild, Item_other) &

7 table_price(ld, Price_other) &

8 table_Seller(ld, Seller_other) &

9 (ltem \== Item_other | Price \== Price_other |
10 Seller \== Seller_other))

11 <— +table_ID(Id);

12 +table_item (Id, ltem);
13 +table_price(ld, Price);
14 +table_Seller(ld, Seller).

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

https://www.di.unito.it/~baldoni/argonauts/

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
FIPA Contract Net Interaction Protocol Specification

FIPA-ContractNet-Protocol J

‘ Initiator | | Participant
H
i
olp m
isn refuse
[n
dead-
j=n-i
propose

reject-proposal K<l

;
o |
accept-proposal 1K _ 1

inform-done : inform

Inform-result : inform

chopra®@lancaster.ac.uk (Lancast Detroit, Tutorial T8 76

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
BSPL Contract Net Protocol

1 ContractNet {

2 role Contractor, Participant

3 parameter out IDt key, out task, out outcome

4 private pdecision, offer, outcome

5 Contractor —> Participant : cfp [out IDp key, out IDt key

, out task]

6 Participant — Contractor : propose [in IDp key, in IDt
key, in task, out offer, out pdecision]

7 Participant —> Contractor : refuse [in IDp key, in IDt
key, in task, out outcome, out pdecision]

8 Contractor —> Participant : accept_prop [in IDp key, in
IDt key, in offer, out accept, out x|

9 Contractor —> Participant : reject_prop [in IDp key, in
IDt key, in offer, out outcome, out x|

10 Participant — Contractor : done [in IDp key, in IDt key,
in accept, out outcome]

11 Participant — Contractor : failure [in IDp key, in IDt
key, in accept, out outcome]

12 }

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code
1+4!startCNP (Idt , Task)

2 <— Ifind_participants;

3 lefp(ldt, Task);

4 .wait(all_enabled_proposal(ldt), 10000, _);
5 l'contract(ldt).

6

7+!cfp(ldt, Task)

8 : true

9 <— for (participant(Participant)) {

10 // WHAT IS MISSING HERE ?

11 lget_new_counter (ldp);

12 lattempt(cfp(ldp, Idt, Task)[receiver(Participant)]);

13 }.

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code
1+4!startCNP (Idt , Task)

2 <— Ifind_participants;

3 lefp(ldt, Task);

4 .wait(all_enabled_proposal(ldt), 10000, _);
5 l'contract(ldt).

6

7+!cfp(ldt, Task)

8 © true

9 <— for (participant(Participant)) {

10 7enabled (cfp (out, out, out)[receiver(out)]);
11 lget_new_counter (ldp);

12 lattempt(cfp(ldp, Idt, Task)[receiver(Participant)]);

13 }.

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code
1+!contract(ldt)

2 true

3 < . findall(

4 offer (Offer, Idp, P),

5 // WHAT IS MISSING HERE ?

6 L

7 ;

8 L \== []: // constraint the plan execution to at least one
offer

9 .min(L, offer (WOffer, WIdp, WAg)); // sort offers, the first

is the best
10 lannounce_result(ldt, L, WIdp, WAg).

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code

1+!contract(ldt)
2 : true

3 <— .findall(

4 offer (Offer, Idp, P),

5 enabled (accept_prop(ldp, Idt, Offer, out, out)[receiver(P)

1).

6 L

7 ;

8 L \== []: // constraint the plan execution to at least one
offer

9 .min(L, offer(WOffer, WIdp, WAg)); // sort offers, the first

is the best
10 lannounce_result(ldt, L, WIidp, WAg).

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code
l1+!announce_result(-, [], -, -).
2
3 // announce to the winner
4 +lannounce_result(ldt, [offer(Offer, WIidp, WAg) | T], WIidp, WAg)
5 . // WHAT IS MISSING HERE 7
6 <— !complete(accept_prop(WIdp, Idt, Offer, Accept, X)[receiver(

WAg) |) ;
7 // WHAT IS MISSING HERE ?
8 lannounce_result(ldt, T, WIidp, WAg).

9
10 // announce to others
11 +!announce_result(ldt, [offer(Offer, Lldp, LAg) | T], WIidp, WAg)

12 . LAg \== WAg & Lidp \== Wlidp &

13 // WHAT IS MISSING HERE ?

14 <~ lcomplete(reject_prop(Lldp, Idt, Offer, Outcome, X)[receiver
(LAg) 1)

15 // WHAT IS MISSING HERE ?

16 lannounce_result(Ildt, T, WIidp, WAg).

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise
An implementation of CNP in Jason with Orpheus

Listing: An excerpt of the contractor agent code

l1+!announce_result(-, [], -, -).
2 // announce to the winner
3+lannounce_result(ldt, [offer(Offer, Widp, WAg) | T], Widp, WAg)

4 . enabled(accept_prop(WIdp, Idt, Offer, out, out)[receiver (WAg
)1)
5 <— lcomplete(accept_prop(WIdp, Idt, Offer, Accept, X)|[receiver(
WAg)]) ;
6 lattempt(accept_prop (Wldp, Idt, Offer, Accept, X)[receiver (
WAg)])

lannounce_result(ldt, T, Wldp, WAg).
8 // announce to others
9+lannounce_result(ldt, [offer(Offer, Lldp, LAg) | T], WIidp, WAg)

10 : LAg \== WAg & Lldp \== WIdp &
11 enabled(reject_prop (Lldp, Idt, Offer, out, out)[receiver(LAg
)1)
12 <~ lcomplete(reject_prop(LIdp, Idt, Offer, Outcome, X)|[receiver
(LAg) 1)
13 lattempt(reject_prop(Lldp, Idt, Offer, Outcome, X)[receiver (
LAg)1):

14 lannounce_result(ldt, T, WIidp, WAg).

Implementing MAS Based on Models of Intera

Azorus
In Greek mythology, the helmsman of Jason’s ship, the Argo

By Konstantinos Volanakis, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=9080257

chopra®@lancaster.ac.uk (Lancaster, Uni Hands-on IOP

25, Detroit, Tutorial T8

https://commons.wikimedia.org/w/index.php?curid=9080257

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus

Yet, leading methods for interactions and agent programming bypass each other

Cognitive Information
programming protocols
goal-driven agents flexible, decentralized
plan generation verifiable

AN

Azorus melds
three major
paradigms

interaction meaning
query processing

Commitments

chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP Detroit, Tutorial T8

[y

Implementing MAS Based on Models of Intera

Exercises: Orpheus

An example

EBusiness Protocol: Many Ways to Execute It
1 EBusiness {

2 role Buyer, Seller, Bank

3 parameter out ID key, out item, out price, out status

4 Seller — Buyer : offer [out ID key, out item, out price]

5 Buyer —> Seller : accept [in ID key, in item, in price, out decision]

6 Buyer —> Bank : instruct [in ID key, in price, out details]

7 Bank —> Seller : transfer [in ID key, in price, in details, out payment]

8 Seller — Buyer : shipment [in ID key, in item, in price, out status]

9 Seller —> Bank : refund [in ID key, in item, in payment, out amount, out status]
03}

AN A A |)\
seller buyer bank
| offer(1,dellXP,1500) i I

buyer seller bank

offer(1,dellXP,1500) H
e
| shipment(1,delIXP,1500,shipped) accept(1,dellXP, 1500 ,buy)

e Y >

| instruct{1,1500 seller) _ |

instruct(1,1500,seller)
|_ transfer(1,1500,seller,1500) | | | ¢ transfer(1,1500,seller,1500)
| accept(1,dellXP,1500,buy) | | shipment(1,dellXP,1500,shipped) |
~ | !

seller buyer bank buyer seller

bank
A d I A d

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus Architecture and Framework

Green: what developers provide; blue: state; red: tool & generated components

Azorus Agent
Queries and Plans MAS Specification
Internal Logic Commitments (Cupid)
Protocol (BSPL)

Compute Enabled Messages & Commitments

Update Commitment Events

Y
| Azorus Compiler
into Adapter

Update Protocol State: Reception

|
|
‘ Update Protocol State: Emission
|
|

Attempt Emission

Beliefs

no central store
‘ Commitment Events

Decentralized
Social State
Lstored by each agent

Asynchronous Communication Service

T1T TTTTp

‘ Protocol State

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus

Specify operations via an information protocol and meanings via commitments

1 commitment OfferCom Seller to Buyer // if transfer, then shipment
2 create offer

3 detach transfer[, created OfferCom + 5] where "Payment>=Price”

4 discharge shipment [, detached OfferCom + 5]

5

6 commitment AcceptCom Buyer to Seller // if shipment, then transfer

7 create accept

8 detach shipment[, created AcceptCom + 5]

9 discharge transfer[, detached AcceptCom + 5] where "Payment>=Price”
10

11 commitment RefundCom Seller to Buyer // if violated OfferCom, then refund
12 create offer

13 detach violated OfferCom

14 discharge refund[, detached RefundCom + 2] where "Amount >= Payment”
15

16 commitment TransferCom Bank to Buyer // if instructed , then transfer

17 create instruct

18 discharge transfer[, created TransferCom + 2] where "Payment=Price”

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus

Snippets of generated agent code

1 now_detached (OfferCom, Seller, Buyer, Id, Item, Price, Bank,
Payment, Timestamp0) :—

2 detached_OfferCom (Seller , Buyer, Id, Item, Price, Bank, Payment
, Timestamp0) &

3 mylLib.second_time (Now) &

4 TimestampO<=Now.

5

6 enabled (shipment(Id, ltem, Price, out)[receiver(Buyer)]) :—

7 table_ID(Id) &

8 table_item(ld, Item) &

9 table_price(ld, Price) &
10 not (table_status(ld, Status)) &
11 table_Buyer(ld, Buyer).

12
13 +!attempt(Message[receiver (R)]) <—
14 .send (R, tell , Message);

15 +sent (Message[receiver(R)]).

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise

EBusiness Protocol: Seller agent

Listing: An excerpt of the Seller agent code
1 {!select_and_handle_message ([shipment(Ild, Item, Price, out)[receiver(Buyer)] | -])
2 enabled (shipment(ld, Item, Price, out)[receiver(Buyer)]) &
3 // WHAT IS MISSING HERE??
4 in_stock (Item) & .my_name(Seller)
5 <« lcomplete(shipment(Ild, Item, Price, Status)[receiver (Buyer)
6 lattempt(shipment(ld, Item, Price, Status)|[receiver(Buyer)]

D)
).

Listing: An excerpt of the Seller agent code

1 +!select_and_handle_message([refund(ld, Item, Payment, out, out)[receiver(Bank)] | -])
2 . enabled(refund(Id, Item, Payment, out, out)[receiver(Bank)]) &

3 // WHAT IS MISSING HERE??

4 < lcomplete(refund(Ild, Item, Payment, Amount, Status)[receiver(Bank)]);

5 lattempt(refund(ld, Item, Payment, Amount, Status)[receiver(Bank)]).

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 90

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Exercise

EBusiness Protocol: Seller agent

Listing: An excerpt of the Seller agent code

1 {!select_and_handle_message ([shipment(Ild, Item, Price, out)[receiver(Buyer)] | -])

2 enabled (shipment(ld, ltem, Price, out)[receiver(Buyer)]) &

3 now_detached_OfferCom(Seller , Buyer, Id, Item, Price, Bank, Details, Payment, Time
) &

4 in_stock(ltem) & .my_name(Seller)

5 < lcomplete(shipment(ld, Item, Price, Status)[receiver(Buyer)]);

6 lattempt(shipment(ld, Item, Price, Status)[receiver(Buyer)]).

Listing: An excerpt of the Seller agent code

1 {iselect_and_-handle_message([refund(Id, Item, Payment, out, out)[receiver(Bank)] | -1)

2 : enabled(refund(ld, ltem, Payment, out, out)[receiver(Bank)]) &

3 now._detached_RefundCom (Seller , Buyer, Id, Item, Price, Bank, Details, Payment, Time
)

4 < lcomplete(refund(Ild, Item, Payment, Amount, Status)[receiver(Bank)]);

5 lattempt(refund(ld, ltem, Payment, Amount, Status)[receiver(Bank)]).

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 91

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus

Snippets of generated agent code
1+!updateComEvents(Id) <—

2 if (now_created_RefundCom (Seller , Buyer, Id, ltem, Price, Time0)
&

3 not ev_now_created_RefundCom (Seller , Buyer, Id, Item, Price,
Time0))

4 { +ev_now_created_RefundCom(Seller , Buyer, Id, Item, Price,
Time0);}

5

6 if (now_detached_RefundCom (Seller , Buyer, Id, Item, Price, Bank,
Details , Payment, Timestampl4) &

7 not ev_now_detached_RefundCom(Seller, Buyer, Id, Item, Price,
Bank, Details, Payment, Timestampl4))

8 { +ev_now_detached_RefundCom (Seller , Buyer, Id, Item, Price,
Bank, Details, Payment, Timestampl4);}

10 if (now_discharged_RefundCom (Seller , Buyer, Id, Item, Price,
Bank, Payment, Amount, Status, Timestampl5) &

11 not ev_now_discharged_RefundCom (Seller , Buyer, Id, Item, Price,
Bank, Payment, Amount, Status, Timestampl5))

12 { +ev_now_discharged_RefundCom (Seller , Buyer, Id, Item, Price,
Bank, Payment, Amount, Status, Timestampl5);}

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 92

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

Azorus

Reacting to commitment event state change

Listing: An excerpt of the Seller agent code
1+ev_now_detached_OfferCom(Seller , Buyer, Id, Item, Price, Bank,
Details , Payment, Time)

2 enabled (shipment(ld, Item, Price, out)[receiver(Buyer)]) &

3 in_stock (ltem) &

4 .my_name(Seller)

5 <— lcomplete(shipment(ld, Item, Price, Status)[receiver(Buyer)]
)i

6 lattempt(shipment(ld, Item, Price, Status)[receiver(Buyer)])

7

8 +ev_now_detached_RefundCom (Seller , Buyer, Id, Item, Price, Bank,
Details , Payment, Time)

9 : enabled(refund(ld, Item, Payment, out, out)[receiver(Bank)])
&
10 .my_name(Seller)
11 <~ !complete(refund(ld, Item, Payment, Amount, Status)|[receiver
(Bank)])
12 lattempt(refund(ld, Item, Payment, Amount, Status)[receiver (
Bank)]).

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 93

Implementing MAS Based on Models of Interaction Programming Exercises: Orpheus

The Azorus Compiler
https://www.di.unito.it/~baldoni/argonauts/

The Azorus compiler automatically generates agent adapters to
manage the local state and query it.

java —jar argonauts.jar --orpheus <file.xml> --azorus
<file.cupid>

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 94

https://www.di.unito.it/~baldoni/argonauts/

The Argonauts

https://www.di.unito.it/~baldoni/argonauts/

By Nordisk familjebok - https://runeberg.org/nfba/0792.html, PublicDomain

Argonauts tools.

usage: java -jar argonauts.jar [(-p | -orpheus) <file>] [(-z
-azorus) <file>] [-t] [-s]1 [-ul [-al [-r]
-a,--azint set azorus integration for orpheus
-m,--smp Adapters contain a plan for sending messages
-p,-—orpheus <orpheus> use orpheus compiler
-r,--checkrole set check role out
-s,--symboltable set bspl symbol table text output
-t,--text set bspl text output
-u,--plantuml set bspl plantuml output
-z,--azorus <azorus> use azorus compiler

chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP , Detroit, Tutorial T8

https://www.di.unito.it/~baldoni/argonauts/
https://runeberg.org/nfba/0792.html, Public Domain

Implementing MAS Based on Models of Interaction Implementing Python Agents

Programming Abstractions for Decentralized Decision
Making

» Interactions traditionally viewed in terms of message ordering
» Properly, interactions are about decentralized decision making
» An agent's communications represents its decisions, driven by internal
(business) logic
Kiko
Enables programming agents on the basis of decision making abstractions
that combine internal logic and communications

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8 96

Noteworthy Benefits

» Enables programming an agent as a set of decision makers
» Empowers programmers by enabling them to focus on the business
logic
» Lower-level aspects of communication abstracted away

» Works over unordered, asynchronous communication channels

» Supports complex decision-making patterns leading to sets of
communications, belonging possibly to multiple multiagent systems
enacting different protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 97

Implementing MAS Based on Models of Interaction Implementing Python Agents

Basis: Declarative Information Protocols

Specify causality, not message ordering

1 Purchase {

2 roles (B)uyer, (S)eller

3 parameters out ID key, out item, out price, out done
4

5 B — S: RFQ[out ID key, out item]

6 S —> B: Quote[in ID key, in item, out price]

7 B — S: Buy[in ID key, in item, in price, out done]
8 B —> S: Reject[in ID key, in price, out done]

9}

» B can send RFQ anytime by generating ID and item

» S can send Quote if it knows ID and item its from local state; it can
generate any binding for price

» Buy and Reject are mutually exclusive since they both conflict on done

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 98

Implementing MAS Based on Models of Interaction Implementing Python Agents

Forms as Causally-Enabled Communications

Message schemas with "in™' parameters filled

B —> S: RFQ[out ID key, out item]

S — B: Quote[in ID key, in item, out price]

B —> S: Buy[in ID key, in item, in price, out done]
B — S: Reject[in ID key, in price, out done]

A W N

RFQ(1, fig)
RFQ(2, jam)

RFQ(ID, item)
Buy(1, fig, $10, done)

Quote(1, fig, $10)

Buyer’s Local state

chopra@lancaster.ac.uk (Lancaster, UniTO, N

Hands-on IOP

Reject(1, $10, done)

Buyer’'s Forms

AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Implementing Python Agents

Adapter-Supported Programming Model for Agents

Write agent as a set of event-triggered decision makers

[E1] Dy
MAS Info Decision Makers
AttemptsJ ’Forms

Config Local State
L———— Protocol Adapter
Instances [

Communication

Service [En]Dn

» Adapter provides decision makers with forms
> Attempts are completed forms by the business logic

» Upon validation, attempts emitted as message instances

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Buyer Bob's Decision Makers

1 @adapter.decision (event=InitEvent) // To send RFQs
2 def start(forms):

3 for item in [” ball”, "bat”]:

4 ID = str(uuid.uuid4())

5 for m in forms.messages(RFQ):

6 m. bind (ID=ID, item=item)

Qadapter.decision (event = 9AM) //To send Buy or Reject
def buy—reject(forms):
for m in forms.messages(Buy):
if (m[" price”] < 20)
m. bind (done="cool")
else reject = next(forms.messages(Reject, ID=m["ID"]))
reject.bind (done="rejected")

~NOoO O~ WN -

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Implementing Python Agents

Multienactment Reasoning and Emitting Sets of Messages

1 //To buy cheapest and reject the rest

2 @adapter.decision (event = 9AM)

3 def cheapest(forms):

buys = forms.messages(Buy)

cheapest = min(buys, key=lambda b: b[” price”])
cheapest.bind(done=True)

[INE,

/*Maximize number of Buys given budget; reject the othersx/
@adapter. decision (event=birthday)
def select_gifts(forms):

best, rest = best_combo(forms)

O~NOOCTWN

for b in best: # buy the best items
b.bind (done=True)

for r in rest: # reject the rest
r.bind (done=True)

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Implementing Python Agents

Multiprotocol Business Logic
Asking for approval for each Buy

Approval {
roles (R)equester, (A)pprover

R — A: Ask[out alD key, out request]
A —> R: Approve[in alD, in request, out approved]

Qadapter.enabled (Buy)
def request_approval(buy):
ask = next(adapter.enabled_messages. messages(Ask), None)

1
2
3
4
5
6}
1
2
3
4
5 return ask.bind (ID=str(uuid.uuid4()), request=buy.payload)

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Implementing Python Agents

Attempts with Contradictions Blocked From Emission

Attempts of a decision maker either wholly succeed or fail

1 @adapter.decision

2 def indecisive (forms):

3 buy = next(forms.messages(Buy))

4 reject = next(forms.messages(Reject, system=buy.system, ID=buy
[("1D"1))

5 buy.bind(done="accepted”)

6 reject.bind(done="rejected”)

Direction
Leverage appropriate typing notions to enable treating a parameter as a
resource that can be bound at most once in a decision maker.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 104

Implementing MAS Based on Models of Interaction Implementing Python Agents

Complex Correlation; Abstraction over Message Events

Merchant 1
P N 2 P+ M: Packed[in olD key, in ilD
olD, address olD, ilD, item key, in item, in Wrapping, i
' . “ label, out status]
Labeler olD, ilD, status Wrapper
\ /
olD, label olD, ilD, wrapping
\ /
Packer

Q@adapter. decision
def decision_packing (forms):

packeds = forms.messages(Packed)

for p in packeds
p.bind(status=True)

NO O~ WN -

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Implementing Python Agents

Conclusions

Kiko: Information-based distributed programming

» Supports complex decision making patterns that involve atomically
emitting sets of messages

» Avoids architectural complexity and inefficiency by not requiring
ordered communication

> Takes maxim of letting programmers focus on the business logic to
new heights

More Directions
» Enable decision making based on norms

» Make fault tolerance convenient (Mandrake coming up)

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 106

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Fault Tolerance in Distributed Systems

Current paradigm focuses on implementing reliability in communication services

Application .

Internet

» TCP guarantees in-order delivery of TCP segments within a
connection

> Message queues, typically layered on top of TCP, do this at the level
of messages

chopra®@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 107

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Delivery Guarantees in Communication Services

Inadequate because sender wants to know if message has been processed by receiver

Patient
e ™
Complaint Fulfilled
e ~
Physician ——— Prescription ———— Pharmacy

Fault
Despite delivery guarantees, Patient times out waiting for Fulfilled from
Pharmacy. Why?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Delivery Guarantees in Communication Services

Inadequate because sender wants to know if message has been processed by receiver

Patient
~ ™
Complaint Fulfilled
e N

Physician Prescription —— Pharmacy

Fault
Despite delivery guarantees, Patient times out waiting for Fulfilled from
Pharmacy. Why?

» Pharmacy sat on the Prescription!

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Need Application-Level Mechanisms

Obviate communication service's delivery guarantees

» Patient forwards Complaint to Physician as a reminder

» Physician forwards Prescription to Pharmacy as a reminder and to
Patient to show progress

» Patient forwards Prescription to Pharmacy

Forwards
< >
Agent Agent
o o o o
Infrastructure Endpoint Infrastructure Endppoint
Vi \
N 7

Infrastructure Delivery Guarantee

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Contributions

> Idea of fault as failure of communication expectation as defined in
application-specific interaction protocol

» Programming model and annotation-based patterns for engineering
fault-tolerant multiagent systems without relying on communication
service guarantees

» Our stuff works over UDP

P> A path to realizing decentralized systems in accordance with the
end-to-end principle

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 110

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

The Prescription Protocol

Prescription {
roles Patient, Physician, Pharmacist
parameters out sID key, out symptom, out done

Patient — Physician: Complaint[out sID key, out symptom]

Physician — Patient: Reassurance[in sID key, in symptom, nil

Rx, out done]

7 Physician — Pharmacist: Prescription[in sID key, in symptom,
nil done, out Rx]

8 Pharmacist — Patient: Fulfilled[in sID key, in Rx, out done]

1
2
3
4
5
6

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Sending Reminders (“Retransmission™)

Application-level: Regardless of whether the original message is lost or simply because the
other agent hasn’t yet responded to it

Q@remind
Patient — Physician: Complaint[in sID key, out symptom]

Annotation means the following message is added to the
protocol

5 Patient — Physician: ComplaintReminder[in sID key, in symptom,
out remlID key]

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 112

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Forwarding Messages

Sending information a different way to route around failures or accelerate recovery

1 @route via Patient

2 Physician — Pharmacist: Prescription[in ID key, in symptom, out
Rx]

3

4 // equivalent to

5 @forward to Patient

6 @forward from Patient to Pharmacist

7 Physician — Pharmacist: Prescription[in ID key, in symptom, out
Rx]

8

9 // produces

10 Physician — Patient: FwdPrescriptionl[in ID key, in symptom, in
Rx, out fwlD1]

11 Patient — Pharmacist: FwdPrescription2[in ID key, in symptom, in
Rx, out fwlD2]

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 113

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Agent Architecture

| Internal Store |
| Proactors | | Reactors |
Agent Internals
Adapter
| Local State |
| Checker |
| Receiver | | Emitter |
chopra@lancaster.ac.uk (Lancas UniTO, N Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8 114

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Recovery Policy

Declarative specification of recovery policies

1// Patient

2 — action: remind Physician of Complaint until Reassurance or
Prescription or Filled

3 when: 0 0 * x x // daily

4 max tries: b

5— action: remind Pharmacist of Prescription after 2 days until
Filled

6 when: 0 0 % x x // daily

7 max tries: 5

chopra®@lancaster.ac.uk (Lancaster, UniT Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 115

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Experimental Results

(a) Patient Only (b) Physician Only

T T T
1,400 7 1300 | |

1,300 |- o
1200 | 1,200 :
1.100| | 1,100 :
LoOI™ . o 0 0.1 02)
0 01 0.2
loss rate e Retry.
—a— Checkpoint

Figure: Messages emitted. Each subfigure represents a different loss
configuration, with the lines representing the two recovery policies. Subfigure (a)
has no loss, (b-c) have one lossy agent. The Y-axes show the number of
messages emitted by PATIENT. The X-axes are the three different loss rates
tested: 0.01, 0.05, and 0.25.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 116

Implementing MAS Based on Models of Interaction Application-level Fault Tolerance

Conclusion

» Don't rely on infrastructure alone

» Application-level fault-tolerance is necessary

» Mandrake makes application-level fault tolerance easier to think
about and implement

AAMAS 2025, Detroit, Tutorial T8 117

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

Outline

Conclusion

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 118

Conclusion

Decentralization and Norms

Any application that spans autonomous parties is decentralized
Decentralization requires modeling interactions

Norms capture meaning of interaction

Norms must be represented

» Crucial to modeling agreements
» Support compliance checking, trust, and accountability

vvyyy

» Norms are operationalized over protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Let's Raise Our Game...to the Application-Level
And Simplify Decentralized Systems!

Today
"_____"T'_______""‘ IOP
| Application? ‘
Internet
Internet

Flexibility means specify, verify, and implement protocols

> Model a mutliagent system via a protocol
» Focus on message meaning; don't rely on message ordering
» Do application-level fault tolerance (not optional)

» Use programming models to implement protocols

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Exercise: Collective Concept Map

> What theme do you remember most from today?

» What connections did you make with stuff you already knew?
» What additional high-level themes should we consider within

> Software engineering?

» Programming languages?
» Artificial intelligence?

» Distributed computing?

» What directions are worth pursuing with the aim of promoting a
deeper understanding between Interaction Orientation, Distributed
Computing, and Agentic?

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Thanks!

» National Science Foundation
» EPSRC
» Science of Security Lablet

» Consortium for Ocean Leadership

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 122

Conclusion

Approach: Specify Social Expectations as Norms

STS
context
«— expectee i
Expectation Antecedent
< expecter
Norm Consequent

Commitment | | Authorization | | Prohibition Power

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Norms: Specify Directed Expectations between Roles

Specify the social architecture of an STS

Kinds Accountable Privileged
(Expectee) (Expecter)
Commitment Debtor Creditor
Prohibition Prohibitee Prohibiter
Authorization Authorizer Authorizee
Power Empowering Empowered

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

AAMAS 2025, Detroit, Tutorial T8

Conclusion

Norms Kinds: Canonical Lifecycles

Captures evolutions of an instance of the kind

\ 4
never ante cons
created
ante
\ 4
. cons .
expired detached —— > discharged
never cons
\ 4
violated

Figure: Commitment lifecycle

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Operationalizing Commitments: Detach then Discharge

C(debtor, creditor, antecedent, consequent)

d:Debtor c:Creditor
create(d, ¢, p, q)

| 1
p
I |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Operationalizing Commitments: Discharge First; Optional
Detach

How about this?

d:Debtor c:Creditor
create(d, ¢, p, q)

| [

opt] :

[true] D D

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 127

Conclusion

Operationalizing Commitments: Detach First; Optional
Discharge

How about this?

d:Debtor c:Creditor
create(d, ¢, p, q)

| [

opt] :

[true] D D

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 128

Conclusion

Operationalizing Commitments: Creation by Creditor

C(debtor, creditor, antecedent, consequent)

d:Debtor c:Creditor
create(d, ¢, p, q)

I I
p
I |

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Operationalizing Commitments: Strengthening by Creditor

C(debtor, creditor, antecedent, consequent)

d:Debtor c:Creditor
create(d, ¢, p, q)
J) ®----C(dcp Q)
C(dc T,q) ----@® u
O q ____ noactive

commitment

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Norm Specifications as Information Schemas

Technical motivation: Tracking norm instances in information stores

Norm-Aware Agent

Agent |
Norm Store

= - virtualized as norm queries
Traditional Information Store (q)

(S g, EETaiEl clizlzes) Traditional Information Store

Figure: Existing approaches (event log, relational database)

Figure: Cupid

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

An Information Model and Commitment Specification

E-commerce setting

1 Quote(S, B, ID, item, uPrice, t) with key ID
2 Accept(B, S, ID, qty, addr, t) with key ID
3 Payment(B, S, ID, pPrice, t) with key ID

4 Shipment (S, B, ID, addr, t) with key ID

5 Refund (S, B, ID, rAmount, t) with key ID

1 commitment DiscountQuote S to B

2 create Quote

3 detach Accept[, Quote + 4] and Payment[, Quote + 4]
4 where pPrice >= 0.9 % uPrice x qty

5 discharge Shipment[, detached DiscountQuote + 4]

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Canonical Queries for DiscountQuote

v

query-name(create-clause, detach-clause, discharge-clause)

» Queries for created, detached, expired, discharged, and violated
commitment instances

» Implementation produces SQL

» Generated SQL long and complicated; near impossible to write
manually
> violated DiscountQuote is 413 lines long
> The five queries amount to 1060 lines

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

Conclusion

Query Results
For times up to 16 June 2020

Quote Accept

ID item uPrice t ID qty addr t

T1 fig 1 1 June 2020 T1 1 Lancaster 2 June 2020
T2 pear 1 1 June 2020 T2 1 Raleigh 2 June 2020

Payment Shipment
ID pPrice t ID addr t
T1 1 2 June 2020 T1 Lancaster 3 June 2020
T2 1 2 June 2020
discharged violated
ID t ID t
T1 3 June 2020 T2 7 June 2020

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 134

Conclusion

Example: Compensation

Nested Commitment

1 commitment Compensation S to B
2 create Quote

3 detach violated (DiscountQuote)

4 discharge Refund[,violated (DiscountQuote) + 9] where rAmount =

pPrice

AAMAS 2025, Detroit, Tutorial T8 135

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP

Conclusion

Semantics in Relational Algebra

For a base event E, [E] equals its materialized relation. The semantics lifts [] to all
expressions. A few given below to illustrate the style.

D;.

Ds.

Dy.

[E[g, h]] = og<t<nlE]. Select all events in E that occur after
(including at) g but before h.

[X Y] = 0w (IXT <0 peje [YD) U 0w ct(peje [X] o [Y]). Select
(X, Y) pairs where both have occurred; the timestamp of this
composite event is the greater of the two.

. [created(c, r,u)] = [c]. A commitment is created when its create

event occurs.
[violated(c, r,u)] = [(c M r) © u]. A commitment is violated when

it has been created and detached but not discharged within the
specified interval.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 136

Conclusion

[{ Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).
Developing Multi-Agent Systems with JADE.
Wiley-Blackwell.

& Bergenti, F., lotti, E., Monica, S., and Poggi, A. (2017).
Agent-oriented model-driven development for JADE with the JADEL
programming language.

Computer Languages, Systems & Structures, 50:142-158.

[Boissier, O., Bordini, R. H., Hiibner, J. F., Ricci, A., and Santi, A.
(2013).
Multi-agent oriented programming with JaCaMo.
Science of Computer Programming, 78(6):747-761.

[Rodriguez, S., Gaud, N., and Galland, S. (2014).
Sarl: A general-purpose agent-oriented programming language.
In 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 3,
pages 103-110.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8 136

Conclusion

[§ Singh, M. P. (2011).
Information-driven interaction-oriented programming: BSPL, the
Blindingly Simple Protocol Language.
In Proceedings of the 10th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 491-498, Taipei.
IFAAMAS.

[§ Vieira, R., Moreira, A. F., Wooldridge, M. J., and Bordini, R. H.
(2007).
On the formal semantics of speech-act based communication in an
agent-oriented programming language.
Journal of Artificial Intelligence Research (JAIR), 29:221-267.

@ Winikoff, M. (2012).
Challenges and directions for engineering multi-agent systems.
CoRR, abs/1209.1428.

chopra@lancaster.ac.uk (Lancaster, UniTO, N Hands-on IOP AAMAS 2025, Detroit, Tutorial T8

	Motivation
	The Idea of Protocols
	Exercises: Specifying Protocols

	Specifying and Verifying Protocols
	Exercises: Specify BSPL protocols
	Demo of Verification Tooling

	Implementing MAS Based on Models of Interaction
	Programming BDI Agents
	Programming Exercises: Orpheus
	Implementing Python Agents
	Application-level Fault Tolerance

	Conclusion

