
Programming for Autonomy

Amit K. Chopra 1 Munindar P. Singh 2

1Lancaster University

2North Carolina State University

16 June 2020 @ PLDI

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 1

https://www.lancaster.ac.uk/staff/chopraak/
http://www.csc.ncsu.edu/faculty/mpsingh/

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 2

Autonomy and Systems (20 minutes)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 3

Autonomy and Systems (20 minutes)

Autonomous System as a Central Technical Entity
Central technical entity that mediates interactions between users
Such as a prediction algorithm or an autonomous vehicle

g g g g

Software
3

I Autonomy is defined as automation: complexity and intelligence

I Software: intelligent agent, service, platform, orchestration,. . .

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 4

Autonomy and Systems (20 minutes)

Sociotechnical System (STS): System of Autonomous
Social Principals
Principals engage on the basis of normative expectations, i.e., norms

Software
3

Principal
g

Principal
g

Software
3

Software
3

Principal
g

Principal
g

Software
3

I Autonomy as a social construct; mirror of accountability
I Norms

I Violable, thus accommodating autonomy
I Directed from accountee to accounter
I Example: A commitment from Seller to Buyer to deliver upon payment
I Commonplace: in agreements, regulations, etc.

I Software aids decision making
chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 5

Autonomy and Systems (20 minutes)

Agents Helping Principals Exercise Autonomy
Inherently decentralized

Principal
g

3 3
Principal

g

Principal
g

3 3
Principal

g

I Each agent reflects the autonomy of its principal

I Agents interact at arms-length via asynchronous messaging

I Each agent a locus of state; no other locus of state in system

I How can we realize a multiagent system based that accommodates
the autonomy of its principals?

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 6

Autonomy and Systems (20 minutes)

Representing Norms
Social Meaning of Interaction

Commitment
By sending a quote for some goods, Seller commits to Buyer that if
payment occurs within five days of quote, then the item will be delivered
within ten days of payment

I Representation enables monitoring, for
I Compliance checking
I Accountability
I Decision making
I System governance

I Declarative representations

I New area of programming language research

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 7

Autonomy and Systems (20 minutes)

Representing the Commitment in Cupid
A view over events, not an execution policy

base events
quote (S , B, ID , item , p r i c e)
pay (S , B, ID , item , amt , addr)
d e l i v e r (S , B, ID , item , addr , s t a t u s)

commitment PurchaseCom S to B
create quote
detach pay within quote + 5d

where amt >= p r i c e
discharge d e l i v e r within pay + 10d

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 8

Autonomy and Systems (20 minutes)

Operationalizing Norms via Protocols
Decentralized computation of norms events

I Who effects an event and when?

I Who observes an event and when?

I Who may generate (bind) a piece of information?

base events
quote (S , B, ID , item , p r i c e)
pay (S , B, ID , item , amt)
d e l i v e r (S , B, ID , item , addr , s t a t u s)

commitment PurchaseCom S to B
create quote
detach pay within quote + 5d

where amt >= p r i c e
discharge d e l i v e r within pay + 10d

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 9

Autonomy and Systems (20 minutes)

Protocols as UML Interaction Diagrams

rfq

quote

pay

deliver

B:Buyer S:Seller

I Informal, synchronous, not compositional, no tooling

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 10

Autonomy and Systems (20 minutes)

Protocols in BSPL
Constrain the occurrence and ordering of messages by specifying information causality
and integrity

Purchase {
role Buyer (B) , S e l l e r (S)

parameter out ID key , out item , out addr , out p r i c e , out amt , out
s t a t u s

B 7→ S : r f q [out ID , out item , out addr]
S 7→ B : quote [in ID , in item , out p r i c e]
B 7→ S : pay [in ID , in item , out amt]
S 7→ B : d e l i v e r [in ID , in item , in addr , out s t a t u s]
}

I Superior alternative to session types and trace-based protocol
languages

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 11

Autonomy and Systems (20 minutes)

Interaction-Oriented Architecture
Norms and Protocols Model Interactions at Meaning and Operational Levels, Respectively

Decision making

Norm computer

Protocol adapter

Decision making

Norm computer

Protocol adapter

Norm
Specification

Protocol
Specification

Agent Agent

Asynchronous communication infrastructure

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 12

Autonomy and Systems (20 minutes)

Asynchronous Communication

I Without message ordering guarantees from the infrastructure (Hewitt and Agha)

I FIFO delivery by infrastructure violates the famous end-to-end argument (Saltzer et al.)

I Insufficient for application
I Complexity in infrastructure
I Imposes cost on applications that don’t need it

I Akka and Erlang guarantee FIFO message delivery

I PL approaches for protocols rely on FIFO delivery

I Challenge: Coordinate computation without assuming ordered delivery

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 13

Autonomy and Systems (20 minutes)

Interaction-Oriented Methodology
Lucid hi-fi computational abstractions for interactions among autonomous principals

I Engineer a system by composing declarative specifications of
interactions
I Strictly without considering agents (endpoint implementations)

I Engineer an agent on the basis of those specifications
I Strictly without considering other agents

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 14

Norms as Meaning (40 minutes)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 15

Norms as Meaning (40 minutes)

Approach: Specify Social Expectations as Norms

STS

Principal Expectation Antecedent

Norm Consequent

Commitment Authorization Prohibition Power

context

expectee

expecter

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 16

Norms as Meaning (40 minutes)

Norms: Specify Directed Expectations between Roles
Specify the social architecture of an STS

Kinds Accountable
(Expectee)

Privileged
(Expecter)

Commitment Debtor Creditor
Prohibition Prohibitee Prohibiter
Authorization Authorizer Authorizee
Power Empowering Empowered

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 17

Norms as Meaning (40 minutes)

Norms Kinds: Canonical Lifecycles
Captures evolutions of an instance of the kind

created

expired detached discharged

violated

never ante cons

ante

cons

never cons

Figure: Commitment lifecycle

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 18

Norms as Meaning (40 minutes)

Operationalizing Commitments: Detach then Discharge
C(debtor, creditor, antecedent, consequent)

create(d, c, p, q)

p

q

d:Debtor c:Creditor

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 19

Norms as Meaning (40 minutes)

Operationalizing Commitments: Discharge First; Optional
Detach
How about this?

create(d, c, p, q)

q

p

d:Debtor c:Creditor

opt

[true]

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 20

Norms as Meaning (40 minutes)

Operationalizing Commitments: Detach First; Optional
Discharge
How about this?

create(d, c, p, q)

p

q

d:Debtor c:Creditor

opt

[true]

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 21

Norms as Meaning (40 minutes)

Operationalizing Commitments: Creation by Creditor
C(debtor, creditor, antecedent, consequent)

create(d, c, p, q)

p

q

d:Debtor c:Creditor

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 22

Norms as Meaning (40 minutes)

Operationalizing Commitments: Strengthening by Creditor
C(debtor, creditor, antecedent, consequent)

create(d, c, p, q)

p

q

d:Debtor c:Creditor

C(d, c, p, q)

C(d, c, >, q)

no active
commitment

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 23

Norms as Meaning (40 minutes)

Norm Specifications as Information Schemas
Technical motivation: Tracking norm instances in information stores

Agent

Traditional Information Store
(event log, relational database)

Figure: Existing approaches

Norm-Aware Agent

Norm Store
(virtualized as norm queries)

Traditional Information Store
(event log, relational database)

Figure: Cupid

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 24

Norms as Meaning (40 minutes)

An Information Model and Commitment Specification
E-commerce setting

Quote (S , B, ID , item , u P r i c e , t) w i t h key ID
Accept (B, S , ID , qty , addr , t) w i t h key ID
Payment (B, S , ID , p P r i c e , t) w i t h key ID
Shipment (S , B, ID , addr , t) w i t h key ID
Refund (S , B, ID , rAmount , t) w i t h key ID

commitment DiscountQuote S to B
create Quote
detach Accept [, Quote + 4] and Payment [, Quote + 4]

where p P r i c e >= 0 . 9 ∗ u P r i c e ∗ qty
discharge Shipment [, d et a c h ed DiscountQuote + 4]

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 25

Norms as Meaning (40 minutes)

Canonical Queries for DiscountQuote

I query -name(create-clause, detach-clause, discharge-clause)

I Queries for created, detached, expired, discharged, and violated
commitment instances

I Implementation produces SQL
I Generated SQL long and complicated; near impossible to write

manually
I violated DiscountQuote is 413 lines long
I The five queries amount to 1060 lines

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 26

Norms as Meaning (40 minutes)

Query Results
For times up to 16 June 2020

Quote

ID item uPrice t

T1 fig 1 1 June 2020
T2 pear 1 1 June 2020

Accept

ID qty addr t

T1 1 Lancaster 2 June 2020
T2 1 Raleigh 2 June 2020

Payment

ID pPrice t

T1 1 2 June 2020
T2 1 2 June 2020

Shipment

ID addr t

T1 Lancaster 3 June 2020

discharged

ID t

T1 3 June 2020

violated

ID t

T2 7 June 2020

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 27

Norms as Meaning (40 minutes)

Example: Compensation
Nested Commitment

commitment Compensat ion S to B
create Quote
detach v i o l a t e d (DiscountQuote)
discharge Refund [, v i o l a t e d (DiscountQuote) + 9] where rAmount =

p P r i c e

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 28

Norms as Meaning (40 minutes)

Semantics in Relational Algebra
For a base event E , [[E]] equals its materialized relation. The semantics lifts [[]] to all
expressions. A few given below to illustrate the style.

D1. [[E [g , h]]] = σg6t<h[[E]]. Select all events in E that occur after
(including at) g but before h.

D2. [[X u Y]] = σt≥t′([[X]] ./ ρt/t′ [[Y]]) ∪ σt′<t(ρt/t′ [[X]] ./ [[Y]]). Select
(X ,Y) pairs where both have occurred; the timestamp of this
composite event is the greater of the two.

D3. [[created(c , r , u)]] = [[c]]. A commitment is created when its create
event occurs.

D4. [[violated(c , r , u)]] = [[(c u r)	 u]]. A commitment is violated when
it has been created and detached but not discharged within the
specified interval.

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 29

Protocols (40 minutes)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 30

Protocols (40 minutes)

Traditional Specifications: Procedural
Low-level, over-specified protocols, easily wrong

A B C

m1

m2

Precedes

A B

m1

m2

XOR

I Traditional approaches
I Emphasize arbitrary ordering and occurrence constraints
I Then work hard to deal with those constraints

I Our philosophy: The Zen of Distributed Computing
I Necessary ordering constraints fall out from causality
I Necessary occurrence constraints fall out from integrity
I Unnecessary constraints: simply ignore such

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 31

Protocols (40 minutes)

Properties of Participants

I Autonomy
I Myopia

I All choices must be local
I Correctness must not rely on future interactions

I Heterogeneity: local 6= internal
I Local state (projection of global state, which is stored nowhere)

I Public or observable
I Typically, must be revealed for correctness

I Internal state
I Private
I Must never be revealed: to avoid false coupling

I Shared nothing representation of local state
I Enact via messaging

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 32

Protocols (40 minutes)

BSPL, the Blindingly Simple Protocol Language
Main ideas

I Only two syntactic notions
I Declare a message schema: as an atomic protocol
I Declare a composite protocol: as a bag of references to protocols

I Parameters are central
I Provide a basis for expressing meaning in terms of bindings in protocol

instances
I Yield unambiguous specification of compositions through public

parameters
I Capture progression of a role’s knowledge
I Capture the completeness of a protocol enactment
I Capture uniqueness of enactments through keys

I Separate structure (parameters) from meaning (bindings)
I Capture many important constraints purely structurally

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 33

Protocols (40 minutes)

Key Parameters in BSPL
Marked as pkeyq

I All the key parameters together form the key

I Each protocol must define at least one key parameter

I Each message or protocol reference must have at least one key
parameter in common with the protocol in whose declaration it occurs

I The key of a protocol provides a basis for the uniqueness of its
enactments

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 34

Protocols (40 minutes)

Parameter Adornments in BSPL
Capture the essential causal structure of a protocol (for simplicity, assume all parameters
are strings)

I pinq: Information that must be provided to instantiate a protocol
I Bindings must exist locally in order to proceed
I Bindings must be produced through some other protocol

I poutq: Information that is generated by the protocol instances
I Bindings can be fed into other protocols through their pinq parameters,

thereby accomplishing composition
I A standalone protocol must adorn all its public parameters poutq

I pnilq: Information that is absent from the protocol instance
I Bindings must not exist

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 35

Protocols (40 minutes)

Protocol in BSPL: Main Ideas
I Declarative

I No control flow, no control state

I Information-based
I Specifies the computation of distributed information object

I Message specification is atomic protocol

I Specified via parameters

I Explicit causality
I The messages an agent can send depends upon what it knows
I Via parameter adornments poutq, pinq, pnilq

I Integrity
I Agent only sends messages that preserve consistency of objects
I Via key constraints

I Asynchronous messaging

I Requires no ordering from infrastructure

I Composition and verification

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 36

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

B:rfq

ID item

S:rfq

ID item

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig

B:rfq

ID item

1 fig

S:rfq

ID item

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam

S:rfq

ID item

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam

S:rfq

ID item

5 jam

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam
×1 apple

S:rfq

ID item

5 jam

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam
8 fig

B:rfq

ID item

1 fig
5 jam
8 fig

S:rfq

ID item

5 jam

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 37

Protocols (40 minutes)

The Offer Protocol

O f f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 38

Protocols (40 minutes)

The Offer Protocol

O f f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
}

Offer (virtual)

ID item price

1 fig

B:rfq

ID item

1 fig

B:quote

ID item price

S:rfq

ID item

1 fig

S:quote

ID item price

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 38

Protocols (40 minutes)

The Offer Protocol

O f f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 38

Protocols (40 minutes)

The Offer Protocol

O f f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 38

Protocols (40 minutes)

The Offer Protocol

O f f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10
×4 fig 10

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 38

Protocols (40 minutes)

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]

B 7→ S : a c c e p t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 39

Protocols (40 minutes)

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]

B 7→ S : a c c e p t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]
}

Decide Offer (virtual)

ID item price decision

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

B:reject

ID item price decision

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 39

Protocols (40 minutes)

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]

B 7→ S : a c c e p t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]
}

Decide Offer (virtual)

ID item price decision

1 fig 10 nice

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

1 fig 10 nice

B:reject

ID item price decision

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 39

Protocols (40 minutes)

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]

B 7→ S : a c c e p t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]
}

Decide Offer (virtual)

ID item price decision

1 fig 10 nice

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

1 fig 10 nice

B:reject

ID item price decision

×1 fig 10 nice

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 39

Protocols (40 minutes)

The Purchase Protocol

Purchase {
role B, S , S h i p p e r
parameter out ID key , out item , out p r i c e , out outcome
private a d d r e s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
B 7→ S : a c c e p t [in ID , in item , in p r i c e , out a d d r e s s , out r e s p]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome , out r e s p]

S 7→ S h i p p e r : s h i p [in ID , in item , in a d d r e s s]
S h i p p e r 7→ B : d e l i v e r [in ID , in item , in a d d r e s s , out outcome]
}

I reject conflicts with accept on resp (a private parameter)

I reject or deliver must occur for completion (to bind outcome)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 40

Protocols (40 minutes)

Knowledge and Viability
When is a message viable? What effect does it have on a role’s local knowledge?

Knows Does not know

Knows Does not know

Sender’s View

in out nil

Knows Does not know

Knows Does not know

Receiver’s View

in
out
nil

in
out

nil

I Knowledge increases monotonically at each role

I An poutq parameter creates and transmits knowledge

I An pinq parameter transmits knowledge

I Repetitions through multiple paths are harmless and superfluous

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 41

Protocols (40 minutes)

Possible Enactments as Sets of Local Histories
Each participant’s local history: set of messages sent and received

Buyer Seller Shipper

rfq

quote

accept

ship

deliver

Buyer Seller Shipper

rfq

quote

reject

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 42

Protocols (40 minutes)

Standing Order
As in insurance claims processing

I n s u r a n c e−Cla ims {
role Vendor (V) , S u b s c r i b e r (S)
parameter out pID key , out cID key , out c la im , out r e s p o n s e

Create−P o l i c y (V, S , out pID , out d e t a i l s)
S 7→ V : c l a i m R e q u e s t [in pID , out cID , out c l a i m]
V 7→ S : c l a i m R e s p o n s e [in pID , in cID , out r e s p o n s e]
}

I Illustrates composite keys
I A policy (identified by a binding for pID) may be associated with

multiple claims (each identified by a binding for cID)

I Composes protocol Create-Policy, which produces bindings for pID

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 43

Protocols (40 minutes)

in-out Polymorphism
price could be pinq or poutq

F l e x i b l e −O f f e r {
role B, S
parameter in ID key , out item , p r i c e , out qID

B 7→ S : r f q [i n ID , out item , nil p r i c e]
B 7→ S : r f q [i n ID , out item , in p r i c e]

S 7→ B : quote [i n ID , in item , out p r i c e , out qID]
S 7→ B : quote [i n ID , in item , in p r i c e , out qID]
}

I The price can be adorned pinq or poutq in a reference to this protocol

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 44

Protocols (40 minutes)

Flexible Sourcing of out Parameters
Buyer or Seller Offer

Buyer−or−S e l l e r −O f f e r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e , out c o n f i r m e d

Buyer 7→ S e l l e r : r f q [in ID , out item , nil p r i c e]
Buyer 7→ S e l l e r : r f q [in ID , out item , out p r i c e]

S e l l e r 7→ Buyer : quote [in ID , in item , out p r i c e , out
c o n f i r m e d]

S e l l e r 7→ Buyer : quote [in ID , in item , in p r i c e , out c o n f i r m e d]
}

I The buyer or the seller may determine the binding

I The buyer has first dibs in this example

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 45

Protocols (40 minutes)

Remark on Control versus Information Flow

I Control flow
I Natural within a single computational thread
I Exemplified by conditional branching
I Presumes master-slave relationship across threads
I Impossible between mutually autonomous parties because neither

controls the other
I May sound appropriate, but only because of long habit

I Information flow
I Natural across computational threads
I Explicitly tied to causality

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 46

Protocols (40 minutes)

Summary: Main Ideas
Taking a declarative, information-centric view of interaction to the limit

I Specification
I A message is an atomic protocol
I A composite protocol is a set of references to protocols
I Each protocol is given by a name and a set of parameters (including

keys)
I Each protocol has inputs and outputs

I Representation
I A protocol corresponds to a relation (table)
I Integrity constraints apply on the relations

I Enactment via LoST: Local State Transfer
I Information represented: local 6= internal
I Purely decentralized at each role
I Materialize the relations only for messages

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 47

Protocols (40 minutes)

Realizing BSPL via LoST
Think of the message logs you want

I For each role
I For each message that it sends or receives

I Maintain a local relation of the same schema as the message

I Receive and store any message provided
I It is not a duplicate
I Its integrity checks with respect to parameter bindings
I Garbage collect expired sessions: requires additional annotations

I Send any unique message provided
I Parameter bindings agree with previous bindings for the same keys for

pinq parameters
I No bindings for poutq and pnilq parameters exist

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 48

Protocols (40 minutes)

Information Centrism
Characterize each interaction purely in terms of information

I Explicit causality
I Flow of information coincides with flow of causality
I No hidden control flows
I No backchannel for coordination

I Keys
I Uniqueness
I Basis for completion

I Integrity
I Parameter has only one value (relative to its value of its key)

I Immutability
I Durability
I Robustness: insensitivity to

I Reordering by infrastructure
I Retransmission: one delivery is all it needs

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 49

Protocols (40 minutes)

Safety: Purchase Unsafe
Remove conflict between accept and reject

Purchase Unsafe {
role B, S , S h i p p e r
parameter out ID key , out item , out p r i c e , out outcome
private a d d r e s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
B 7→ S : a c c e p t [in ID , in item , in p r i c e , out a d d r e s s]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome]

S 7→ S h i p p e r : s h i p [in ID , in item , in a d d r e s s]
S h i p p e r 7→ B : d e l i v e r [in ID , in item , in a d d r e s s , out outcome]
}

I b can send both accept and reject

I Thus outcome can be bound twice in the same enactment

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 50

Protocols (40 minutes)

Liveness: Purchase No Ship
Omit ship

Purchase No Ship {
role B, S , S h i p p e r
parameter out ID key , out item , out p r i c e , out outcome
private a d d r e s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B : quote [in ID , in item , out p r i c e]
B 7→ S : a c c e p t [in ID , in item , in p r i c e , out a d d r e s s , out r e s p]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome , out r e s p]

S h i p p e r 7→ B : d e l i v e r [in ID , in item , in a d d r e s s , out outcome]
}

I If b sends reject, the enactment completes

I If b sends accept, the enactment deadlocks

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 51

Protocols (40 minutes)

Safety and Liveness Violations
Encode a protocol’s causal structure in temporal logic and evaluate propertes

B S Shipper

Purchase Unsafe

Safety Violation

rfq

quote

accept

ship

reject

deliver

B S Shipper

Purchase No Ship

Liveness Violation

rfq

quote

accept

deliver

Cannot occur

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 52

Protocols (40 minutes)

Encode Causal Structure as Temporal Constraints

I Reception. If a message is received, it was previously sent.
I Information transmission (sender’s view)

I Any pinq parameter occurs prior to the message
I Any poutq parameter occurs simultaneously with the message

I Information reception (receiver’s view)
I Any poutq or pinq parameter occurs before or simultaneously with the

message

I Information minimality. If a role observes a parameter, it must be
simultaneously with some message sent or received

I Ordering. If a role sends any two messages, it observes them in some
order

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 53

Protocols (40 minutes)

Verifying Safety

I Competing messages: those that have the same parameter as out

I Conflict. At least two competing messages occur

I Safety iff the causal structure ∧ conflict is unsatisfiable

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 54

Protocols (40 minutes)

Verifying Liveness

I Maximality. If a role is enabled to send a message, it sends at least
one such message

I Reliability. Any message that is sent is received

I Incompleteness. Some public parameter fails to be bound

I Live iff the causal structure ∧ the above three is unsatisfiable

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 55

Protocols (40 minutes)

Exercises 1: Abruptly Cancel

A b r u p t l y C a n c e l {
role B, S
parameter out ID key , out item , out outcome

B 7→ S : o r d e r [out ID , out i tem]
B 7→ S : c a n c e l [in ID , in item , out outcome]
S 7→ B : goods [in ID , in item , out outcome]
}

I Is this protocol safe?

I Is this protocol live?

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 56

Protocols (40 minutes)

Exercise 2: Abruptly Cancel Modified (with pnilq)

A b r u p t l y C a n c e l {
role B, S
parameter out ID key , out item , out outcome

B 7→ S : o r d e r [out ID , out i tem]
B 7→ S : c a n c e l [in ID , in item , nil outcome]
S 7→ B : goods [in ID , in item , out outcome]
}

I Is this protocol safe?

I Is this protocol live?

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 57

Protocols (40 minutes)

Exercise 3: Goods Priority

I Modify Abruptly Cancel so that goods takes priority over cancel
I If S sends Goods, that is the outcome of the interaction
I S cannot send Goods after receiving Cancel
I If S receives Cancel before Goods, cancellation is the outcome
I B cannot send Cancel after receiving Goods

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 58

Protocols (40 minutes)

Solution

A b r u p t l y C a n c e l {
role B, S
parameter out ID key , out item , out outcome

B 7→ S : o r d e r [out ID , out i tem]
B 7→ S : c a n c e l [in ID , in item , nil outcome , out r e s c i n d]
S 7→ B : c a n c e l A c k [in ID , in item , out outcome , in r e s c i n d]
S 7→ B : goods [in ID , in item , nil r e s c i n d , out outcome]
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 59

Protocols in Programming Languages Research (40 minutes)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 60

Protocols in Programming Languages Research (40 minutes)

Ideal Protocol-Based System Architecture

Agent Agent

Principal Principal

Protocol

Asynchronous communication infrastructure

I Constraints
1. Agent ensures the correctness of its emissions. To do so, it needs

nothing but its local state (history of prior emissions and receptions)
2. The reception of any message is correct, if it was emitted correctly
3. Asynchrony: Emissions nonblocking; receptions nondeterministic

I No ordered delivery guarantee needed from infrastructure.

4. The protocol is the complete operational specification of the system

I Assumption: Infrastructure delivers only sent messages
I No guaranteed delivery assumed

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 61

Protocols in Programming Languages Research (40 minutes)

Diverse Protocol Languages
Appear in Software Engineering, Multiagent Systems, Services, Programming Languages

I Procedural, message ordering-based
I UML interaction diagrams, MSCs
I Trace expressions-based

I Castagna et al., 2012

I Session types-based (Honda et al.)
I Scribble (Yoshida et al., 2013)

I Declarative, information-based
I Blindingly Simple Protocol Language, or BSPL (Singh, 2011-12)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 62

Protocols in Programming Languages Research (40 minutes)

Problem: How Do Modern Languages Compare?

I Criteria
I Concurrency
I Asynchrony, message ordering
I Instances (correlation and integrity)
I Extensibility

I Based on encoding of elementary scenarios

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 63

Protocols in Programming Languages Research (40 minutes)

Concurrency: Can All These Enactments Be Supported?

B S

Request

Shipment

Payment

(a) Shipment first

B S

Request

Payment

Shipment

(b) Payment first

B S

Request
Payment

Shipment

(c) Concurrent

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 64

Protocols in Programming Languages Research (40 minutes)

Flexible Purchase: No Valid Encoding in Scribble
In Scribble, choice cannot be mixed, that is, between a send and a receive action

F l e x i b l e Purchase {
role B, S
parameter out ID key , out item , out sh ipped , out p a i d

B 7→ S : Request [out ID , out i tem]
S 7→ B : Shipment [i n ID , i n item , out s h i p p e d]
B 7→ S : Payment [i n ID , i n item , out p a i d]
}

p r o t o c o l F l e x i b l e P u r c h a s e (r o l e B, r o l e S) {
Request () from B to S ;
c h o i c e a t B {

Payment () from B to S ;
Shipment () from S to B ;

} o r {
Shipment () from S to B ; // not v a l i d
Payment () from B to S ;}}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 65

Protocols in Programming Languages Research (40 minutes)

Technical Reason: Possibility of deadlock
p r o j e c t i o n F l e x i b l e P u r c h a s e B {

Request () to S ;
c h o i c e a t B { /∗ i n t e r n a l c h o i c e ∗/

Payment () to S ;
Shipment () from S ;

} o r {
Shipment () from S ;
Payment () to S ;

}
}

p r o j e c t i o n F l e x i b l e P u r c h a s e S (r o l e B, r o l e S) {
Request () from B ;
c h o i c e a t B { /∗ e x t e r n a l c h o i c e ∗/

Payment () from B ;
Shipment () to B ;

} o r {
Shipment () to B ;
Payment () from B ;

}
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 66

Protocols in Programming Languages Research (40 minutes)

Flexible Purchase: No Valid Encoding in Trace
For analogous reasons

// F l e x i b l e Purchase i n Trace

Buyer Request−−−−→ S e l l e r ; (Buyer Payment−−−−→ S e l l e r ∧ S e l l e r Shipment−−−−−→
Buyer)

// P r o j e c t i o n s

Buyer : S e l l e r ! Request .
((S e l l e r ? Shipment . S e l l e r ! Payment) ⊕

(S e l l e r ! Payment . S e l l e r ? Shipment))

S e l l e r : Buyer ? Request .
((Buyer ! Shipment . Buyer ? Payment) +

(Buyer ? Payment . Buyer ! Shipment))

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 67

Protocols in Programming Languages Research (40 minutes)

Scribble Needs FIFO Ordering; BSPL doesn’t
B sends Want (some item) and then WillPay (some amount) to S

B S

Want

WillPay

(d) FIFO delivery

B S

W
ant

WillPay

(e) Non-FIFO delivery

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 68

Protocols in Programming Languages Research (40 minutes)

Want+WillPay in BSPL and Scribble
Without FIFO, Scribble violates Reception Correctness

WantWillPay {
role B, S
parameter out ID , out item , out p r i c e

B 7→ S : Want [out ID , out i tem]
B 7→ S : W i l l P a y [i n ID , i n item , out p r i c e]
}

p r o t o c o l WantWillPay (r o l e B, r o l e S) {
Want () from B to S ;
W i l l P ay () from B to S ;

}

p r o j e c t i o n WantWil lPay S {
Want () from B ;
W i l l P ay () from B ;

}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 69

Protocols in Programming Languages Research (40 minutes)

How Far Does Pairwise FIFO Go Though?

Scenario: In an indirect-payment purchase protocol, after receiving an
Offer B sends Accept to S and then Instruct (a payment instruction) to
bank K. Upon receiving Instruct, B does a funds Transfer to S

B S K

Offer

Accept Instruct

Transfer

(f) In-order delivery

B S K

Offer

Accept

Instruct

Transfer

(g) Out-of-order delivery
(despite satisfying FIFO)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 70

Protocols in Programming Languages Research (40 minutes)

BSPL Captures Scenario; Scribble Introduces a Contortion
Scribble: Reorders messages based upon channels

I n d i r e c t Payment {
role B, S , K // K i s bank
parameter out ID key , out item , out p r i c e , out acc , out i n s t , out OK

S 7→ B : O f f e r [out ID , out item , out p r i c e]
B 7→ S : Accept [i n ID , i n item , i n p r i c e , out acc]
B 7→ K: I n s t r u c t [i n ID , i n p r i c e , i n acc , out i n s t]
K 7→ S : T r a n s f e r [i n ID , i n p r i c e , i n i n s t , out OK]
}

p r o t o c o l I n d i r e c t P a y m e n t (r o l e S , r o l e C , r o l e B) {
O f f e r () from S to B ;
Accept () from B to S ;
I n s t r u c t () from B to K;
T r a n s f e r () from K to S ;
}
p r o j e c t i o n I n d i r e c t P a y m e n t S (r o l e B, r o l e S , r o l e K) {

O f f e r () to B ;
Accept () from B ;
T r a n s f e r () from K;
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 71

Protocols in Programming Languages Research (40 minutes)

Want+WillPay and Indirect Payment in Trace
Without FIFO, Trace too violates Reception Correctness and, slightly differently from
Scribble, no possible encoding of Indirect Payment in Trace

//Want+W i l lP a y p r o t o c o l i n Trace

Buyer Want−−−→ S e l l e r ; Buyer WillPay−−−−→ S e l l e r

//Want+W i l lP a y P r o j e c t i o n s
Buyer : S e l l e r ! Want ; S e l l e r ! W i l l P a y
S e l l e r : Buyer ?Want ; Buyer ? W i l l P a y

// I n d i r e c t Payment

S e l l e r Offer−−→ Buyer ; Buyer Accept−−−→ S e l l e r ; Buyer Instruct−−−−→ Bank ;

Bank Transfer−−−−→ S e l l e r

// I n d i r e c t Payment P r o j e c t i o n
S e l l e r : Buyer ! O f f e r ; Buyer ? Accept ; Bank? T r a n s f e r

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 72

Protocols in Programming Languages Research (40 minutes)

Architectural Comparison

Agent AgentBSPL Protocol

Asynchronous communication infrastructure

Agent AgentTrace Protocol

FIFO-based asynchronous communication infrastructure

Agent Agent

Channel
selector

Channel
selector

Scribble Protocol

Protocol

FIFO-based asynchronous communication infrastructure

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 73

Protocols in Programming Languages Research (40 minutes)

Principles for Protocol Languages (1)

I Nonunitarian: A protocol must not specify computations from a
unitary perspective
I Scribble and Trace both give the computations of the protocol from a

unitary perspective—as a sequence of messaging events.
I Deadlock occurs in Scribble and Trace versions of Flexible Purchase

because a computation of the protocol cannot be realized by agents
reasoning locally.

I Noninterference: Protocol must not block legitimate agent reasoning
I By allowing the FIFO infrastructure (and channel selector, in case of

Scribble) to hold back messages from an agent blocks the reasoning
the agent could have performed if messages were delivered to it as they
came, Scribble and Trace violate the principle.

I Seller could have processed WillPay and gone ahead with shipping even
if it had not received Want

I Seller could have processed Transfer and gone ahead with shipping
even if it had not received Accept

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 74

Protocols in Programming Languages Research (40 minutes)

Principles for Protocol Languages (2)
I Protocol End-to-End: Correct protocol enactment must not rely on

message ordering guarantees from the communication infrastructure
since the appropriate constraints are to be implemented and checked
in agents.
I As Indirect Payment illustrates, FIFO infrastructure is inadequate.
I FIFO ordering is also excessive: orders messages that bear no relation

to each other.

Just−Want {
role Buyer , S e l l e r
parameter out ID , out i tem

Buyer 7→ S e l l e r : Want [out ID , out i tem]
}

H e l l o−World {
role Buyer , S e l l e r
parameter out gID , out u t t e r a n c e

Buyer 7→ S e l l e r : G r e e t i n g [out gID , out u t t e r a n c e]
}

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 75

Protocols in Programming Languages Research (40 minutes)

BSPL Less Demanding, Yet Offers More
Details: https://arxiv.org/abs/1901.08441

Criterion Trace Scribble BSPL

Supports concurrency No No Yes
Unordered delivery No No Yes
Instances Limited Limited Yes
Integrity No No Yes
Norms computation No No Yes
Extensibility No No Yes
Nonunitarian No No Yes
Noninterference No No Yes
Protocol E2E No No Yes

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 76

https://arxiv.org/abs/1901.08441

Applying Meanings and Protocols (20 minutes)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 77

Applying Meanings and Protocols (20 minutes)

Smart Contract
Inviolability as contract

I Program signed by principals and stored on blockchain

I Known in advance how it will function
I Guaranteed to run if inputs satisfied

I Doomsday machine?

I Bitcoin transactions

I On Ethereum, R3 Corda, etc., general-purpose platforms

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 78

Applying Meanings and Protocols (20 minutes)

Smart Contract-Based Architecture

Smart Contract
qua

Agreement

Smart Contract
qua

Input Checker

Recorded
Events

Blockchain

Participants

Devices

co
n
tro

l

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 79

Applying Meanings and Protocols (20 minutes)

Limitations of Smart Contracts
Consider “Goods delivered if payment made”

I Take away participant autonomy
I Seller may not deliver goods

I Difficult to understand, verify, and validate
I Low-level programs

I Lack of social meaning
I Real world cannot be abstracted away

I What if there are no goods in Seller’s inventory?
I What if delivery fails?
I What if buyer denies having received goods?

I Undoing Ethereum transactions in DAO hack was a social response
I An ad hoc one though
I So much for immutability!

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 80

Applying Meanings and Protocols (20 minutes)

Challenges for Contract-Driven Computing
How to represent and compute the social, rather than get rid of it

I Declarative representations of contracts that
I Accommodate autonomy: Contracts may be violated
I Support verifiability: Violations are recorded
I Support social meaning (expectations, trust, accountability)
I Support stakeholder validation via high-level representations
I Can be computed in a decentralized manner

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 81

Applying Meanings and Protocols (20 minutes)

Violable Contracts on Blockchain

Violable
Contract

qua
Agreement

Smart Contract qua
Contract State

Evaluator

Smart Contract
qua

Input Checker

Recorded
Events

Blockchain

Participants

Devices

co
n
tro

l

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 82

Applying Meanings and Protocols (20 minutes)

Smart Contracts vs. Violable Contracts, Architecturally

Smart Contract
qua

Agreement

Smart Contract
qua

Input Checker

Recorded
Events

Blockchain

Participants

Devices

co
n
tro

l

(h) Smart contracts

Violable
Contract

qua
Agreement

Smart Contract qua
Contract State

Evaluator

Smart Contract
qua

Input Checker

Recorded
Events

Blockchain

Participants

Devices

co
n
tro

l

(i) Compacts

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 83

Applying Meanings and Protocols (20 minutes)

Contrasting Compacts with Traditional and Smart
Contracts

Traditional Smart Compacts
Specification Text Procedure Formal, declarative
Automation None Full Compliance checking
Principals’ Control Complete None Complete
Venue External Within blockchain Recorded on blockchain
Trust Model Hidden Hardcoded Explicit
Social Meaning Informal None Formal
Correctness Standard Informal legal Whatever executes Formal legal
Scope Open but ad hoc Closed Sociotechnical

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 84

Applying Meanings and Protocols (20 minutes)

IoT Vision: Decentralized Applications Supported by
Fine-Grained Information about the Environment
However, popular programming models such as Node-RED are based upon orchestration

Asynchronous communication infrastructure

Node-RED Endpoint Node-RED EndpointTightly coupled

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 85

Applying Meanings and Protocols (20 minutes)

Realizing BSPL via LoST in Node-RED
Implemented over UDP: Supports application-level retries to mitigate message loss
Performance comparable to MQTT over TCP

Asynchronous communication infrastructure

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Protocol
Specification

Agent (Endpoint) Agent (Endpoint)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 86

Applying Meanings and Protocols (20 minutes)

Decentralized Applications on FaaS Platforms
Protocol + FaaS = highly modular and concurrent agent out of the box
Developer focuses on business logic
Implemented on AWS Lambda

Proactor Reactor

Local State

Internal Store

Checker

Receiver Emitter

Agent Internals

Adapter

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 87

Takeaways and Discussion (20)

Outline

Autonomy and Systems (20 minutes)

Norms as Meaning (40 minutes)

Protocols (40 minutes)

Protocols in Programming Languages Research (40 minutes)

Applying Meanings and Protocols (20 minutes)

Takeaways and Discussion (20)

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 88

Takeaways and Discussion (20)

Takeaways: 1

I Any system that spans autonomous parties is decentralized

I A single machine (even if distributed) cannot model decentralization

I Decentralization requires modeling interactions

I Norms capture meaning of interaction
I Norms must be represented

I Crucial to modeling agreements
I Support compliance checking, trust, and accountability

I Norms have be operationalized over protocols

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 89

Takeaways and Discussion (20)

Takeaways: 2

I Protocols must not rely on ordering guarantees from infrastructure
I Don’t hide synchronization in the infrastructure
I Can the protocol work over UDP?

I Protocol must specify information causality, not a control flow of
messages

I Protocol specifies how to compute decentralized objects

I Must a reception happen in a certain order relative to other
receptions and emissions for purposes of correctness? Then you are
yet to embrace asynchrony

I Don’t impose models that interfere with agent autonomy

I Apply End-to-End Principle: Retransmissions, fault tolerance, etc.
not to be implemented in infrastructure. Application-level protocols
must accommodate these ideas

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 90

Takeaways and Discussion (20)

Exercise: Collective Concept Map

I What theme do you remember most from today?
I What additional high-level themes should we consider within

I Software engineering?
I Programming languages?
I Artificial intelligence?
I Distributed computing?

I What research questions are worth pursuing with the aim of
promoting a deeper understanding between Interaction Orientation
and PL?

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 91

Takeaways and Discussion (20)

Thanks!

I Samuel Christie, Daria Smirnova

I National Science Foundation

I EPSRC

I Science of Security Lablet

I Consortium for Ocean Leadership

I Raymond Hu, Viviana Mascardi, and Angelo Ferrando for feedback on
protocol languages evaluation

chopra@lancaster.ac.uk (singh@ncsu.edu) Programming for Autonomy 16 June 2020 @ PLDI 92

	Autonomy and Systems (20 minutes)
	Norms as Meaning (40 minutes)
	Protocols (40 minutes)
	Protocols in Programming Languages Research (40 minutes)
	Applying Meanings and Protocols (20 minutes)
	Takeaways and Discussion (20)

