
Adaptation in Open Systems: Giving Interaction its
Rightful Place

Fabiano Dalpiaz, Amit K. Chopra, Paolo Giorgini, and John Mylopoulos

Department of Information Engineering and Computer Science, University of Trento
dalpiaz,chopra,paolo.giorgini,jm@disi.unitn.it

Abstract. We address the challenge of adaptation in open systems. Opensys-
tems are characterized by interactions among autonomous and heterogeneous
participants. In such systems, each participant is a locus of adaptation; nonethe-
less, a participant would typically have to interact with others in order to effect
an adaptation. Existing approaches for software adaptation do not readily apply
to such settings as they rely upon control-based abstractions.
We build upon recent work on modeling interaction viasocial commitments. Our
contributions in this paper include (1) formalizing the notion of a participant’s
strategy for a goal not just in terms of goals and plans, but also in terms of the
commitments required, and (2) a conceptual model and framework for adaptation
built around this notion of strategy that allows using arbitrary strategy selection
criteria—for example, trust. We illustrate our contributions with examples from
the emergency services domain.

1 Introduction

One of principal challenges in software engineering is supporting runtime adaptation in
software systems. In this paper, we address the challenge ofadaptation inopen systems.
Open systems involve autonomous and heterogeneous participants who interact in order
to achieve their own respective goals [8]. Autonomy impliesthat no participant has
control over another; heterogeneity that the participants’ internal constructions, not only
in terms of code but also in terms of goals and policies, may bedifferent. Additionally,
a participant will likely keep its internal construction private to others. In this sense,
they are completely independent of each other.

Many of the applications that we rely upon today are open—forexample, banking,
foreign exchange transactions, trip planning. Trip planning, for example, involves a cus-
tomer, a travel agency, airlines, credit card companies, and so on—each an autonomous
entity with its own private goals and policies. The participants interact with each other
in order to fulfill their respective goals.

Clearly, supporting adaptation in open systems is as valuable as in any other kind of
system. In the trip planning application, the travel agencymay book an alternate flight
for his customer in case the workers of the airline with whichthe customer is currently
booked are likely to go on strike the day of the flight. Typically, however, the travel
agent will not do that before interacting with the customer and getting his approval for
the change. Neither is the customer’s approval guaranteed—he could prefer to arrive
a day early than two hours late. Thus, in adapting, the travelagent must interact with
another autonomous entity—the customer. The point we emphasize here is twofold.

1. In open systems, each participant, being autonomous, is an independent locus of
adaptation.

2. Nonetheless, in effecting an adaptation, a participant needs to interact with others
to achieve goals it cannot achieve by itself.

This paper addresses the challenge of understanding what itmeans for a participant
to adapt in open systems, and thus how one might design adaptive software that repre-
sents the participant. It emphasizes interaction among participants and the correspond-
ing social abstractions. By contrast, recent trends in software adaptation emphasize
centralized, control-based abstractions and largely ignore interaction. Our emphasis on
interaction is not a matter of technique—interaction is what makes things work in open
systems, and our approach reflects that reality.

From here on, we refer to a participant as anagent. An important kind of agent—that
ties our work to software engineering—is a software system that pursues the interests
of a particular stakeholder. Our contributions specifically are the following.

– A conceptual model for adaptation in open systems that emphasizes interaction.
– The formalization of the notion of an agent’s strategy for a goal. The notion of strat-

egy covers interaction with other agents, and forms the common semantic substrate
for adaptation across agents, whoever they may be designed by.

– A framework for adaptation that allows plugging in arbitrary agent-specific criteria
in order toselect andoperationalize alternate strategies.

In previous work we proposeddesign-time reasoning about the suitability of inter-
action protocols for a participant’s goals [5]. Here, such results constitute the baseline
of our framework for participantruntime adaptation in open systems.

The rest of the paper is organized as follows. Section 2 introduces a conceptual
model for adaptive agents in open systems. Section 3 presents a set of motivating ex-
amples of agent adaptation drawn from a firefighting scenario. Section 4 formalizes the
notion of a strategy. Section 5 explains the overall framework for adaptive agents. It
presents an agent control loop and focuses on the selection and operationalization of
a strategy. Section 6 contrasts our model to existing approaches, summarizes the key
points, and outlines future work.

2 Modeling Adaptive Agents in Open Systems

Section 2.1 recaps a conceptual model for agents in open systems [4]. Section 2.2 then
describes the concepts involved in agent adaptation.

2.1 Agents in Open Systems

Following Tropos [1], we model an agent as a goal-driven entity (Fig. 1). An agent has
goals that reflect its own interests. An agent may have the capability to achieve certain
goals; for others, he may have no such capability. A capability is an abstraction for
specific plans that an agent may execute to achieve the goal. To support those goals,
an agent may depend on other agents. Conceptually, the approach in [4] goes beyond

Fig. 1. Conceptual model for agents in open systems [4]

Tropos in that it makes these dependencies concrete and publicly verifiable by explicitly
modeling interaction. In other words, the agent interacts with others (via messaging) to
realize those dependencies.

A distinguishing feature of [4] is that the interactions aremodeled in terms of
commitments. A commitmentC(debtor, creditor, antecedent, consequent) is a promise
made by thedebtor to thecreditor that if theantecedent is brought about, theconsequent
will be brought about. For example,C(customer, travel agency, tickets delivered, paid)
represents a commitment from the customer to the travel agency that if the tickets are
delivered, then the payment will be made.

In open systems, an agent would have to interact with others and rely on commit-
ments with them in order to support its goals. The agent can either play the debtor
or the creditor in a commitment. In the above example, the customer’s goal of hav-
ing tickets delivered (tickets delivered) is supported by the commitment he makes (by
sending the appropriate message, details in [4]) to the travel agency. Alternatively,
the customer could request a commitment from the travel agency for tickets. If the
travel agency responds by creatingC(travel agency, customer, paid, tickets delivered),
then the customer’s goal is supported (provided the customer can bring about the pay-
ment). Roughly, supporting a goal means identifying a strategy which will lead to the
fulfilment of such goal [4] at run-time, provided that the strategy is enacted faultlessly.
In principle, goals can be related to commitments and vice versa, because both goals
and commitments (via the antecedent and consequent) talk about states of the world.

It is well known that commitments abstract over traditionaldescriptions of interac-
tions (such as message choreographies) in terms of data and control flow [17]. More
importantly, commitments support a standard of compliancesuitable for open systems:
an agent behaves in a compliant manner as long as it fulfills its commitments.

Commitments are notably different from traditional Troposgoal modeling:

– Commitments are a social abstraction better suited to open systems than depen-
dencies. Commitments relate agents; they are created by explicit and observable
messaging and hence are publicly verifiable (whether they hold or have been dis-
charged) [14]. Dependencies relate agents, but are not tiedto communication.

– Commitments decouple agents: to support a goal, in principle, an agent has only to
enter into the appropriate commitment relationships with another agent. The agent
need not care if the latter actually has the intention of achieving that goal. This
is possible since commitments are publicly verifiable, and thus socially binding.

By contrast, reasoning with dependencies assumes a centralized perspective, where
traditional AI planning techniques can be exploited [2].

2.2 A Model for Agent Adaptation

Fig. 2 shows the concepts involved in agent adaptation and the relations among them.
The figure helps answer the following questions.Why should an agent adapt?When is
adaptation required?What is the object of adaptation?

Fig. 2. Conceptual model for agent adaptation

An agent acts on the basis of its motivational component, thetarget goals it currently
wants to achieve. The reason for adaptation—thewhy—is that the current strategy for
achieving the current goals is inadequate or can be improved.

Every agent maintains its own state in aknowledge base, which is updated based
upon theevents the agent observes. An agent adaptswhen a certain adaptationtrigger
is activated. A trigger is a condition that is monitored for one or more target goals and
is specified over the knowledge base. Three types of trigger are shown in Fig. 2; this list
of types is not meant to be exhaustive but rather illustrative. A threat means that target
goals are at risk; anopportunity means that a better strategy may be adopted; aviolation
means that the current strategy has failed. Both threat and opportunity relate to proactive
adaptation policies—the agent adapts to prevent failures.By contrast, violation triggers
are set off upon failures. Table 1 extends such triggers withmore specific trigger types.

The object of adaptation, that is,what to adapt to, represents the new strategy, tech-
nically avariant. When the trigger goes off, the variant is activated. The variant repre-
sent the set ofgoals that need to be achieved in order to achieve the target goal. These
goals are supported either by the agent’scapabilities or commitments. Additionally, the
variant is computed with respect to the agent’sgoal model—for example, this ensures
that the set of goals to be achieved are sound with respect to goal decomposition (this
notion is formalized later in Definition 3).

As explained above, the model in Fig. 1 motivates thesupports relation. Fig. 2
exploits thesupports relation in the notion of variant. A variant is essentially acollection
of goals, commitments, and capabilities that are necessaryto support the agent’s target
goals (Definition 4 formalizes this notion).

Type Description

Capability threat The capability (plan) for an active goal is undermined
Commitment threat The fulfillment of a commitment from another agent is at risk
Capability opportunity An alternative capability has become more useful to exploit
Social opportunity A new agent is discovered with whom it is better to interact
Commitment violation A commitment from another agent is broken (timeout or cancellation)
Capability failure A capability was executed but failed
Quality violation An internal quality threshold is not met by the agent

Table 1.Taxonomy of adaptation trigger types

3 Motivating Examples

We discuss examples of agent adaptation in a firefighting scenario. It serves as the
running example throughout the rest of the paper.

Jim is a fire chief. His top goal is to extinguish fires. That goal may be achieved
either by using a fire hydrant or a tanker truck. The top part ofTable 2 showsJim’s goal
model in Tropos. Ticked goals are those for whichJim has capabilities. The bottom part
of Table 2 lists the commitments used in Figures 3–6.

Label Commitment

C1 C(Brigade 1, Jim, hydrant need notified, hydrant usage authorized)
C2 C(Jim,Brigade 1, tanker service paid, tanker truck used)
C3 C(Tanker 1, Jim, tanker service paid, fire reached by tanker truck)
C4 C(Tanker 2, Jim, tanker service paid, fire reached by tanker truck)

Table 2.Running example: Jim is a fire chief (top); commitments in thescenario (bottom)

Each of the Figures 3–6 depictsJim’s active variant for the goal of having fires
extinguished before (on the left of the dark, solid arrow) and after adaptation (on the
right of the arrow). The chorded circles are agents. A variant depicts the active part of
Jim’s goal model, that is, those goals in the goal model ofJim that he has instantiated,
and the capabilities and commitments required tosupport that goal. Commitments are
represented by labeled directed arrows between agents—thedebtor and creditor are
indicated by the tail and the head of the arrow respectively.

We lack the space to explain the details of howJim’s fire extinguished goal is sup-
ported after adaptation in each example. The key point to take away from these exam-

ples is thatJim’s set of active goals, the capabilities required, and his commitments to
and from others change as a result of adaptation in response to some trigger.

Tactic 1 (Alternative goals) (Example 1) Choose a different set of goals in a goal
model to satisfy target goals. The agent believes the current strategy will not succeed.

Example 1. (Fig. 3) Jim tries to achievefire extinguished via a variant that relies upon
using the fire hydrant. However, the fulfillment ofC1, which is necessary to support
the goal, is threatened becauseBrigade 1 hasn’t authorized hydrant usage yet. SoJim
switches to another variant that supportsfire extinguished via tanker truck used. To
supporttanker truck used, Jim makesC2 to Brigade 1 and getsC3 from Tanker 1.

Fig. 3. Alternative goals: Jim switches from a variant involving fire hydrant usage to another
involving tanker truck usage

Tactic 2 (Goal redundancy) (Example 2) Select a variant that includes redundant ways
for goal satisfaction. Useful for critical goals that the agent wants to achieve at any cost.

Example 2. (Fig. 4).Jim’s current strategy is to fight the fire via the hydrant. However,
C1 is threatened. SoJim adopts a strategy which involvesalso calling a water tanker
truck. By contrast, Example 1 involves no redundancy.

Fig. 4. Goal redundancy: Jim adopts a redundant variant, which involves also calling a tanker
truck

Tactic 3 (Commitment redundancy) (Example 3) More commitments for a goal are
taken. Useful if the agent does not trust some agent it interacts with. Also, it applies
when a commitment from someone else is at risk due to the surrounding environment,
and a different commitment is more likely to succeed.

Example 3. (Fig. 5) Jim doesn’t trustTanker 1 much forC3. Therefore, he decides to
get a similar commitmentC4 from Tanker 2.

Fig. 5. Commitment redundancy: Jim getsC4 from Tanker 2

Tactic 4 (Switch debtor) (Example 4) Get a commitment for the same state of the
world but from a different debtor agent. Useful if the creditor believes the current debtor
will not respect its commitment or a more trustworthy debtorcomes into play. The
original debtor is released from his commitment.

Example 4. (Fig. 6).Jim takesC3 from Tanker 1, but fears thatTanker 1 will violate the
commitment. Thus,Jim releasesTanker 1 fromC3 and instead getsC4 from Tanker 2.

Fig. 6.Switch debtor: Jim releases Tanker 1 fromC3 and takesC4 from Tanker 2

Tactic 5 (Division of labor) (Example 5) Rely on different agents for different goals
instead of relying on a single agent. Distribution of work spreads the risk of complete
failure.

Example 5. SupposeJim wants to use both fire hydrant and a water tanker truck. Also,
supposeBrigade 1 acts as a water tanker provider. ThenJim could use the tanker service
from Brigade 1. However,Jim applies division of labor to minimize risk of failure: he
takesC1 from Brigade 1 andC3 from Tanker 1.

Tactic 6 (Commitment delegation) (Example 6) An agent delegates a commitment in
which he is debtor to another agent, perhaps because he can’tfulfill it.

Example 6. Jim does not have resources to fight a fire. So he delegates his commitment
to extinguish a fire to another fire chiefRon of a neighboring town.

Tactic 7 (Commitment chaining) (Example 7) Agentx’s commitmentC(x, y, g0, g1)
is supported if he can getC(z, x, g2, g1) from somez and ifx supportsg2.

Example 7. Jim wants to achieve goaltanker truck used. It makesC2 to Brigade 1 so
thattanker service paid is achieved. In such a way, it can getC3 from Tanker 1.

4 Formalization

We now formalize the notion of a variant. This formalizationis not specific to any
individual agent—it forms the common semantic substrate upon which we later build a
comprehensive adaptation framework. We explain the formalization by referring to the
examples introduced earlier.

Let g, g′, g′′, g1, g2, . . . be atomic propositions (atoms);p, q, r, . . . be generic propo-
sitions;x, y, z, . . . be variables for agents. Letaid be the agent under consideration. A
commitment is specified as a 4-ary relationC(x, y, p, q). It represents a promise from a
debtor agentx to the creditor agenty for the consequentq if the antecedentp holds. Let
P be a set of commitments.

Commitments can be compared via a strength relation [6]. If an agent commits for
something, it will also commit for something less. Also, it will commit if he gets more
than expected in return. Such an intuition is captured via the transitive closure ofP .

Definition 1. Given a set of commitmentsP , P∗ is its transitive closure with respect
to the commitments strength relation [6].

LetP = {C(fireman, brigade, team assigned ∨ ambulance sent, fire fought ∧ casu-
alties rescued)}. Then, for instance,C(fireman, brigade, team assigned ∨ ambulance
sent, fire fought) ∈ P∗, C(fireman, brigade, team assigned ∨ ambulance sent, casual-
ties rescued) ∈ P∗, C(fireman, brigade, team assigned, fire fought) ∈ P∗.

Definition 2. A goal model Mid specifies an agentaid as:

1. a set of AND/OR trees whose nodes are labeled with atoms;
2. a binary relation on atomsp-contrib;
3. a binary relation on atomsn-contrib.

An AND/OR tree encodes the agent’s knowledge about how to achieve the root
node. The nodes are the agent’s goals.p-contrib(g, g′) represents positive contribution:
the achievement ofg also achievesg′. n-contrib(g, g′) is negative contribution: the
achievement ofg denies the achievement ofg′. The top part of Table 2 is a goal model
for agentJim. MJim has one AND/OR tree rooted by goalfire extinguished. MJim

contains no contributions.
We introduce the predicatescoped to capture a well-formedness intuition: a goal

cannot be instantiated unless its parent is, and if a goal’s parent is and-decomposed, all
the siblings of such a goal must also be instantiated.

Definition 3. A set of goalsG is scoped with respect to goal modelMid, that is,
scoped(G,Mid) if and only if, for all g0 ∈ G, either

1. g0 is a root goal inMid, or
2. exists a simple path〈g0, g1, . . . , gn〉 in Mid such thatgn is a root goal inMid and

∀i, 0 ≤ i ≤ n :
(a) gi ∈ G, and
(b) if anddec(gi+1) (i 6= n), then∀g such thatparent(gi+1, g), g ∈ G

Example 8. G1 = {fire extinguished, fire hydrant used} is scoped with respect toMJim.
Indeed,fire extinguished is a root goal, whereasfire hydrant used is part of path〈fire
hydrant used, fire extinguished〉.

A variant is an abstract agent strategy for the achievement of some goal. It consists
of a set of goalsG that the agent intends to achieve via a set of commitmentsP and a
set of capabilitiesC. A variant is defined with respect to an agent’s goal modelMid.

Definition 4. A triple ⌊G,P , C⌋ is a variant for a goalg with respect to goal model
Mid, that is,⌊G,P , C⌋ |=Mid

g if and only if

1. scoped(G,Mid) andg ∈ G, and
2. g is supported:∄g′ ∈ G : n-contrib(g′, g) ∈ Mid, and either

(a) g ∈ C, or
(b) C(x, aid, g

′, g) ∈ P∗ : ⌊G,P , C⌋ |=Mid
g′, or

(c) C(x, y, g, g′) ∈ P∗, or
(d) ordec(g), and either

i. ∃g′ : parent(g, g′) and⌊G,P , C⌋ |=Mid
g′, or

ii. C(x, aid, g
′, q) ∈ P∗ : q ⊢

∨
parent(g,gi)

gi and⌊G,P , C⌋ |=Mid
g′, or

iii. C(x, y, p, g′) ∈ P∗ : p ⊢
∨

parent(g,gi)
gi;

(e) anddec(g) and∀g′ : parent(g, g′) and⌊G,P , C⌋ |=Mid
g′, or

(f) p-contrib(g′, g) ∈ Mid : ⌊G,P , C⌋ |=Mid
g′.

The goalsG thataid intends to achieve should be scoped with respect to the goal
modelMid (clause 1). Goalg must be supported: there should be no negative contri-
butions tog from any goal inG and one clause among 2a-2f should hold (clause 2).

2a. capabilities support goals;
2b. aid gets a commitment forg from some other agentx if aid supports the antecedent;
2c. some agenty brings aboutg in order to get a commitment forg′ from some other

agentx (possiblyaid itself);
2d. an or-decomposed goalg is supported if either: there is some subgoalg′ such that

⌊G,P , C⌋ |=Mid
g′ (2(d)i), g is supported via commitment to (2(d)iii) or from

(2(d)ii) other agents. These two clauses cover the case of anagent who commits
for a proposition that logically implies the disjunction ofall the goal children. For
instance, a commitment forg1∨g2 supports a goalg or-decomposed tog1∨g2∨g3;

2e. an and-decomposed goal is supported if⌊G,P , C⌋ is a variant for every children;
2f. positive contribution fromg′ supportsg if ⌊G,P , C⌋ |=Mid

g′.

Definition 5 generalizes the notion of variant to sets of goals. A variant for a goal
set should be a variant for each goal in the set.

Definition 5. A triple ⌊G,P , C⌋ is a variant for a goal setG′ with respect to goal model
Mid, that is⌊G,P , C⌋ |=Mid

G, if and only if, for allg in G′, ⌊G,P , C⌋ |=Mid
g.

Example 9. G = {fire extinguished, tanker truck used, tanker service paid, fire reached
by tanker truck, pipe connected}, P = {Cy = C(Jim, y, tanker service paid, fire extin-
guished),Cz = C(z, Jim, tanker service paid, fire reached by tanker truck)}, C = {pipe
connected}. ⌊G,P , C⌋ |=MJim

fire extinguished. Shown in the right side of Fig. 3.

Step 1.From Definition 3,G is scoped with respect toMJim. Indeed,fire extinguished
is a root goal,tanker truck used is and-decomposed, all its subgoals are inG, and there
is a path from all goals inG to fire extinguished.
Step 2.From Definition 4, we should check ifg is supported. Clause 2(d)i applies to
fire extinguished if ⌊G,P , C⌋ |=MJim

tanker truck used.
Step 3.tanker truck used is and-decomposed intotanker service paid, fire reached by
tanker truck, pipe connected; 2e tells to verify every subgoal.
Step 4.pipe connected is in C, therefore 2a applies.
Step 5.tanker service paid can be supported ifJim commits forCy to some agent (2c).
Step 6.fire reached by tanker truck is supported if some agent commits forCz to Jim
(2b), given that the antecedenttanker service paid is supported.

5 A Framework for Adaptive Agents

The conceptual model we introduced in the previous sectionsis the foundation to define
a framework for the development of adaptive agents. First, we sketch a generic control
loop for an adaptive agent in Algorithm 1. Then, we investigate agent adaptation poli-
cies for variant selection (Section 5.1) and variant operationalization (Section 5.2).

Algorithm 1 An adaptive agent.AGENT is a generic agent control loop.TRIGGEREDis
an event handler for adaptation triggers
AGENT()
1 while OBSERVE(ε)
2 do UPDATE(σ, ε)
3 . . .

TRIGGERED(goal [] G, goalModelM, stateσ)
1 variant[] V ← GENVARIANTS(G,M)
2 variantV ← SELVARIANT(V, σ)
3 OPERATIONALIZE(V, σ)

Algorithm 1 shows the skeleton of an adaptive agent. The procedureAGENT sketches
the part of a generic agent control loop related to adaptation. An agent observes an event
ε from the environment, then it updates the current stateσ of its knowledge base.

The procedureTRIGGERED is an event handler for adaptation triggers, which is
executed whenever some event sets off an adaptation trigger. The input parameters are
a set of target goalsG, the agent’s goal modelM, and the stateσ.

First, the agent generates all variantsV for the goalsG with respect to the goal
modelM. FunctionGENVARIANTS is standard for any agent and is computed accord-
ing to Definitions 4 and 5. Second, the agent selects one of thevariants inV . Such choice
depends on the agent’s internal policies. Section 5.1 details variant selection. A variant
V is an abstract strategy. It is a triple⌊G,P , C⌋ composed of goalsG, commitmentsP ,
and capabilitiesC. Neither commitments nor capabilities are grounded to concrete enti-
ties. The agent should therefore operationalize the variant: commitments must be bound
to actual agents, capabilities to real plans. Section 5.2 describes operationalization.

5.1 Variant selection

Variant selection is the choice of one variant among all the generated ones. Function
SELVARIANT takes as input a set of variants and a state and returns one of these variants.

SELVARIANT : 2V × S → V

SELVARIANT({V1, . . . , Vn}, σ) = Vi : 1 ≤ i ≤ n

Table 3 shows some common criteria for variant selection. Due to its autonomy,
each agent is free to decide its own criterion.

Name Description

Cost Minimize the overall cost, expressed as money, needed resources, time
Stability Minimize the distance between the current strategy and the new one
Softgoals Maximize the satisfaction of quality goals (performance, security, risk, . . .)
Preference Choose preferred goals and commitments
Goal Redundancy Choose a redundant variant to achieve critical goals

Table 3.Generic criteria for variant selection

Example 10. Table 4 specifies the functionSELVARIANT for Fig. 4 as an Event-Condi-
tion-Action rule. We used such formalism to keep our explanation simple. In practice
variant selection policies will be expressed via appropriate policy definition languages.
Such a function is based upon the goal redundancy tactic. Thetriggering event is that
commitmentC1 is threatened. It applies if the target goal isfire extinguished, commit-
mentsC2, C3, C4 are not in place,Jim adopted goalfire hydrant used and nottanker
truck used. The action specifies the transition to the new variant.Jim adopts goaltanker
truck used and its children, uses his capability forpipe connected, gets commitmentCz,
and commits forCy. Cy andCz, from Example 9, are unbound.

Event Condition Action

threatened(C1)

target(fire extinguished),
¬made(C2),
¬taken(C3), ¬taken(C4),
adopted(fire hydrant used),
¬adopted(tanker truck used)

adopt(tanker truck used),
adopt(tanker service paid),
adopt(fire reached by tanker truck),
adopt(pipe connected),
useCapability(pipe connected),
get(Cz), make(Cy)

Table 4.Event-Condition-Action rule for variant selection with goal redundancy (Fig. 4)

5.2 Variant operationalization

TheOPERATIONALIZE function takes as input the selected variant and an agent’s state
and returns a set of states.

OPERATIONALIZE : V × S → 2S

OPERATIONALIZE(⌊G,P , C⌋, σ) = BINDTOPLAN (C); BINDAGENT(P)

Operationalization means identifying a concrete strategyto achieve goals and com-
mitments in a variant. Commitments are bound to real agents (BINDAGENT), whereas
capabilities are bound to executable plans (BINDPLAN). Let’s explain why such a func-
tion returns a set of states instead of a single one. SupposeJim’s selected variant in-
cludes finding some agent that will commit forCz. Jim may send a request message for
Cz to all known tanker providers—Tanker 1 andTanker 2—and get a commitment from
the first one that accepts. IfTanker 1 answers first, the function returns a stateσ1 where
C3 holds; if Tanker 2 answers first, the returned state will beσ2 such thatC4 holds.

With respect to Table 4, operationalization would be invoked insideuseCapabil-
ity(pipe connected) to bind an appropriate plan to the capability, and insideget(Cz) and
make(Cy) to bindz andy to the appropriate agents.

Table 5 shows some generic criteria an agent can exploit and combine to opera-
tionalize a variant.

Name Description

Comm Redundancy More commitments for the same goal from different agents
Division of Labour Involve many agents, each agent commits for a small amount of work
Delegation Delegate some commitment where the agent is debtor to someone else
Trust The agent gets commitments only from other agents it trusts
Reputation Rely on reputation in community to select agentsto interact with

Table 5.Generic criteria for operationalization

Example 11. Let’s operationalize the variant in Example 10.Jim wants to delegate fire-
fighting with tanker truck to the agent he trusts more. He knows two fire chiefs,Ron
andFrank. The one he trusts more isRon.
Step 1.Bind capabilities to plans.Jim binds its capability forpipe connected to a spe-
cific plan where he connects a water pipe to the rear connectorof a water tanker truck.
Step 2.Bind commitments to agents.Jim delegatesC2 to Ron, but he doesn’t get any
response. Thus, he delegates such commitment toFrank, who accepts delegation.Frank
creates a commitment toBrigade 1 and notifiesJim. Fig. 7 illustrates binding to agents.

Fig. 7. Bind commitments to agents: Jim delegatesC2 on the basis of trust

6 Discussion and Conclusion

Zhang and Cheng [18] introduce a formal model for the behavior of self-adaptive soft-
ware. They separate adaptation models from non-adaptationmodels. Adaptation models
guide the transition from a source program to a target one. Salehieet al. [13] propose a
model for adaptation changes based on activity theory. Theydefine a hierarchy for adap-
tation changes and match such concepts to a hierarchy for objectives. Both approaches
are inadequate for open systems: they presume an omniscientview on the system which
violates heterogeneity, and full control on system components which violates autonomy.

Component-based approaches to adaptation [9, 10] assume anexternal controller
that adds, replaces, and rewires system components as necessary. The controller af-
fects adaptations by reflecting upon the architectural model of the system. A centralized
controller-based approach is unrealistic in open systems.

Our approach includes several elements of adapting at the architectural level, albeit
without any central controller, when one considers that commitments are nothing but the
interconnections among agents [15]. Our motivating examples may be seen as patterns
constituting anadaptation style [9] for the commitment-based architectural style.

The meaning that we ascribe to (an agent) beingautonomous is different from being
autonomic [11]. A system isautonomic to the extent it can operate without supervision
from its operator—the operator retains ultimate control. Broadly speaking, the self-*
approaches refer to this notion of being autonomic.

Goal-oriented approaches for adaptation differ from the architectural ones in their
emphasis on modeling the rationale for adaptation in a more detailed manner. How-
ever, the modus operandi remains similar. Either system code is instrumented to support
adaptation [16] or a system is augmented with a controller that runs a monitor, diagnose,
adapt loop [7] . They are inadequate for open systems, since they violate heterogeneity.

Approaches for adaptive agents characterize adaptation interms of mentalistic no-
tions such as goals, beliefs, desires, and intentions. Commitments, on the other hand,
represent a social notion—they cannot be deduced from mentalistic notions, only from
publicly observable communication [14]. Morandiniet al. [12] give an operational ac-
count of goals so as to support adaptation in agents. However, lacking of commitments,
their approach is not applicable for open systems. Unity [3]is a multiagent system cre-
ated for autonomic computing. In Unity,autonomic elements (agents) collaborate to
fulfill the system mission. Open systems, however, encompass competitive settings as
well, and the agents may have no common goal.

In our framework, adaptation is conceived from the perspective of one autonomous
agent which makes no assumptions about the internals of other agents (preserving,
therefore, heterogeneity). An agent relies on interactionwith others to achieve its own
goals. Both the agent’s goals and its architectural connections—specified in terms of
commitments—are explicit and formally related to one another.

This paper provides the underpinnings of agent adaptation in open systems. Our
contribution lies in incorporating interaction as a first-class entity in the notion of a
variant for a goal. We built a framework around this notion ofa variant that allows
plugging in agent-specific variant selection and operationalization policies. Future work
involves detailing these policies, building a middleware that understands the notion of
a variant, and building implementations of adaptive agentson top of this middleware.

Acknowledgements.This work has been partially funded by the EU Commission,
through projects SecureChange, COMPAS, NESSOS and ANIKETOS.

References

1. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

2. Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing socio-technical systems: From
stakeholder goals to social networks.Requirements Engineering, 14(1):47–70, 2009.

3. David M. Chess, Alla Segal, Ian Whalley, and Steve R. White. Unity: experiences with a
prototype autonomic computing system. InProceedings of ICAC, pages 140–147, 2004.

4. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and JohnMylopoulos. Modeling and
reasoning about service-oriented applications via goals and commitments. InProceedings of
CAiSE, volume 6051 ofLNCS, pages from–to. Springer, 2010.

5. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and JohnMylopoulos. Reasoning about
agents and protocols via goals and commitments. InProceedings of AAMAS, 2010. To
appear.

6. Amit K. Chopra and Munindar P. Singh. Multiagent commitment alignment. InProceedings
of AAMAS, pages 937–944, 2009.

7. Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Anarchitecture for requirements-
driven self-reconfiguration. InProceedings of CAiSE, volume 5565 ofLNCS, pages 246–260.
Springer, 2009.

8. Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction pro-
tocols as design abstractions for business processes.IEEE Transactions on Software Engi-
neering, 31(12):1015–1027, December 2005.

9. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure.IEEE Computer,
pages 46–54, 2004.

10. William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. A case study in goal-driven
architectural adaptation. InProceedings of SEAMS, volume 5525 ofLNCS, pages 109–127.
Springer, 2009.

11. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.IEEE Com-
puter, 36(1):41–50, January 2003.

12. Mirko Morandini, Loris Penserini, and Anna Perini. Operational semantics of goal models
in adaptive agents. InProceedings of AAMAS, pages 129–136, 2009.

13. Mazeiar Salehie, Sen Li, Reza Asadollahi, and Ladan Tahvildari. Change support in adaptive
software: A case study for fine-grained adaptation. InProceedings of EaSE, pages 35–44,
2009.

14. Munindar P. Singh. Agent communication languages: Rethinking the principles.IEEE Com-
puter, 31(12):40–47, December 1998.

15. Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Commitment-based service-oriented
architecture.IEEE Computer, 42(11):72–79, 2009.

16. Yiqiao Wang and John Mylopoulos. Self-repair through reconfiguration: A requirements
engineering approach. InProceedings of ASE, pages 257–268, 2009.

17. Pınar Yolum and Munindar P. Singh. Flexible protocol specification and execution: Applying
event calculus planning using commitments. InProceedings of AAMAS, pages 527–534,
2002.

18. Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive soft-
ware. InProceedings of ICSE, pages 371–380, 2006.

